
Extrapolating Solution Paths of Polynomial Homotopies

towards Singularities with PHCpack and phcpy∗

Jan Verschelde† Kylash Viswanathan‡

21 March 2024

Abstract

A robust path tracker [Telen, Van Barel, Verschelde, SISC 2020] computes the radius
of convergence of Newton’s method, estimates the distance to the nearest path, and then
applies Padé approximants to predict the next point on the path. Apriori step size control
is less sensitive to finely tuned tolerances than aposteriori step size control, and is therefore
robust. Extrapolation methods are effective to accurately locate the singular points at the
end of solution paths, as illustrated with phcpy, the scripting interface to PHCpack.

1 Introduction

A polynomial homotopy is a family of polynomial systems which depend on one parameter t.
Regular solutions of a polynomial homotopy have Taylor series developments in t. The solutions
paths are analytic functions of t. Application of the theorem of Fabry [4] enables to locate
the nearest singular solution. The calculations in this paper can be considered in the area of
numerical analytic continuation [6], [18, 19].

Extrapolation methods, in particular the rho [26] and theta [2] algorithms, are effective in
accelerating logarithmically converging series towards a single pole of a polynomial homotopy.
We demonstrate the interplay between compiled code in a library, for the computationally
intensive calculation of the Taylor series, and the interactive Python scripts for the extrapolation
methods. Our calculations happen in Jupyter notebooks [11] with phcpy [16, 21] in a Python
kernel. The interface to the compiled code in PHCpack [20] does not require compilation as it is
done through the Ctypes module of Python which allows to call functions in libraries directly,
similar to ccall in Julia.

Since version 2.4.88, PHCpack became a crate of alire, the package manager of the gnu-ada
compiler, which builds the executable phc and libPHCpack, integrating code of MixedVol [5]
and DEMiCs [14], for fast mixed volume computation, and algorithms for multiple double arith-
metic of QDlib [7] and CAMPARY [9]. The development of phcpy was motivated in part by
SageMath [3]. All software is free and open source, released under version 3 of the GNU GPL
license. Computations are done with phcpy 1.1.4 and version 2.4.90 of PHCpack.

∗Supported by the National Science Foundation under grant DMS 1854513.
†University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S.

Morgan St. (m/c 249), Chicago, IL 60607-7045. Email: janv@uic.edu, URL: http://www.math.uic.edu/∼jan.
‡University of Illinois at Chicago, Department of Mathematics, Statistics, and Computer Science, 851 S.

Morgan St. (m/c 249), Chicago, IL 60607-7045. Email: kviswa5@uic.edu.

1

2 Extrapolation Experiments

The polynomial homotopy

x2 − 4

5

(
1

2
− I

)(
1− t

)(
1

2
+ I − t

)
= 0, I =

√
−1. (1)

has two singularities: one at t = 1 and another at t = 1/2 + I. The coefficient 4/5(1/2 − I)
makes that at t = 0, the solution paths x(t) start at x(0) = ± 1. The phase portrait [24], made
with complexplorer-0.1.2 [13] (which depends on matplotlib [8]), is shown in Figure 1.

Figure 1: A phase portrait of f(z) =
√
4/5(1/2− I)(1− z)(1/2 + I − z), depicting at the left

the color-coded phase f/|f | on the domain of f . At the right is a polar chessboard.

Using the algorithms in [1] to compute the Taylor series is done with phcpy in the code
snippet below:

from phcpy.solutions import make_solution

from phcpy.series import double_newton_at_point

pol = [’x^2 - (4/5)*(1/2 - I)*(1 - t)*(1/2 + I - t);’]

variables = [’x’, ’t’]

sols = [make_solution(variables, [1, 0])]

deg = 33 # degree of truncation

nit = 8 # number of iterations of Newton’s method

srs = double_newton_at_point(pol, sols, idx=2, maxdeg=deg, nbr=nit)

The srs contains the string representation of the Taylor series and the coefficients can be
extracted with the help of SymPy [10]. Denoting cn as the coefficient of tn in the Taylor series, the
ratio cn/cn+1 equals (1.0362677867627397 -0.03656143770249911j), for n = 31, illustrating
the very slow convergence to 1. Series such as this are said to be converge logarithmically, as it
may take about twice as many terms in the series to gain one bit of accuracy.

2

The rho algorithm of Wynn [26] performs spectacularly well on the Taylor series of x(t) =√
1− t, where there is only one pole. In the definition of the function rhoComplex below,

observe the inverse divided differences. The connection with Thiele interpolation is one possible
justification of its good performance on x(t) =

√
1− t.

def rhoComplex(nbr):

"""

Runs the rho algorithm in complex double arithmetic,

on the numbers given in the list nbr, using x(n) = n+1.

Returns the last element of the table of extrapolated numbers.

"""

rho1 = [1.0/(nbr[n] - nbr[n-1]) for n in range(1, len(nbr))]

rho = [nbr, rho1]

for k in range(2, len(nbr)):

nextrho = []

for n in range(k, len(nbr)):

invrho1 = complex(k)/(rho[k-1][n-k+1] - rho[k-1][n-k])

nextrho.append(rho[k-2][n-k+1] + invrho1)

rho.append(nextrho)

return nextrho[-1]

Because the two singularities of (1) are relatively too close to each other, the rho algorithm
fails to improve the sequence of Fabry ratios. In the second homotopy:

x2 −
(

1

272

)(
− 4− 16I

)(
1− t

)(
− 4 + 16I − t

)
= 0, (2)

the singularity at −4 + 16I is much farther from the other singularity at 1, and then the rho
algorithm ends at (1.0000000000014202+4.354118985724171e-14j), using 32 coefficients of
the Taylor series, with an error of 1.42e-12.

The differences between the location of the singularities in the homotopies (1) and (2) is
shown in the schematic of Figure 2. The P at the right of Figure 2 illustrates the notion of the
last pole, introduced in [23].

P

t
1

0

P

t
1

0

Figure 2: At the left, the pole P = 1/2 + I is relatively close to 1, while at the right, the pole
P = −4 + 16I is much farther from 1.

The right of Figure 2 is a representative schematic for a solution path converging to a singular
solution at 1.

3

3 Path Tracking Towards a Singular Solution

One important innovation in the modernization [21] of PHCpack with a scripting interface was
the introduction of a step-by-step path tracker, which allows the user to ask for the next point
on a path. Recently, another step-by-step tracker which applies the apriori step size control
algorithms of [17] was added to phcpy.

The homotopy

γ(1− t)

(
x2 − 1 = 0
y2 − 1 = 0

)
+ t

(
x2 + y − 3 = 0

x+ 0.125y2 − 1.5 = 0

)
(3)

ends at t = 1 at an example of [15], which has a triple root at (x, y) = (1, 2). Figure 3 shows
one path defined by the homotopy (3), converging to (1, 2).

Figure 3: Points on one solution path starting at (1, 1) and converging to (1, 2).

The code below collects the points on the solution path in the list path. The constant γ in
the homotopy (3) is set to the value −0.917− 0.398I. Expecting a singularity at the end of the
path, as long as the distance between the closest pole and 1.0 is larger than 1.0e-4, the path
tracker continues. Three lists are produced: in path are the points on the path, in predicted

are the predicted solutions, and poles contains the list of poles closest to the path.

from phcpy.solutions import make_solution

from phcpy.curves import set_gamma_constant

from phcpy.curves import initialize_double_artificial_homotopy

from phcpy.curves import set_double_solution, get_double_solution

from phcpy.curves import double_predict_correct, double_t_value

from phcpy.curves import double_closest_pole

pols = [’x**2+y-3;’, ’x+0.125*y**2-1.5;’]

start = [’x**2 - 1;’, ’y**2 - 1;’]

startsol = make_solution([’x’, ’y’], [1, 1])

set_gamma_constant(complex(-0.917, -0.398))

initialize_double_artificial_homotopy(pols, start)

4

set_double_solution(2, startsol)

path = [startsol]

predicted = []

poles = []

cfp = complex(0.0)

while abs(cfp - 1.0) > 1.0e-4:

double_predict_correct()

(repole, impole) = double_closest_pole()

tval = double_t_value()

cfp = complex(tval + repole, impole)

poles.append(cfp)

sol = get_double_solution()

predsol = get_double_predicted_solution()

path.append(sol)

predicted.append(predsol)

print(sol)

The code prints

t : 9.99968379127468E-01 0.00000000000000E+00

m : 1

the solution for t :

x : 1.05353846638456E+00 6.88135807075172E-03

y : 1.89010705713382E+00 -1.44977473137858E-02

== err : 6.369E-14 = rco : 7.184E-04 = res : 2.849E-17 =

The value 7.184E-04 next to rco is the estimate for the inverse condition number of the Jacobian
matrix at the point, which gives an upper bound on the error of the update in Newton’s method.
In particular, the update of Newton’s method is correct up to the last four decimal places. Even
as 0.999684 is already close to 1, the solution is thus still well conditioned.
The list poles ends with (1.0000808949264557-6.886127445687259e-08j). Observe how
small the imaginary part is. Only seven terms in the Taylor series were used to compute this
approximation for 1.0.

To visualize the poles with complexplorer, consider the function

f(z) =
∑
p∈L

1

z − p
, (4)

where L is the list of the first twelve poles. The phase portrait of f is shown in Figure 4. The
phase portrait starts to look interesting at the first closest pole, around t ≈ 0.471 + 0.101I.

Figure 5 is constructed using the information of the points on the path and the predicted
solutions. The predicted solutions are evaluated Padé approximants, evaluated in the radius of
convergence for Newton’s method, as estimated by the application of the theorem of Fabry. The
plots in Figure 5 show a sequence of circles with overlapping interiors. Towards the end of the
path, observe that the radii of the circles decrease, as we approach the singularity at the end.
The smaller circles in the middle of the path indicate nearby poles.

5

Figure 4: A phase portrait of f(z), defined in (4) by the poles of one path converging to a
singular solution.

Figure 5: At each point on the path, a circle is drawn, with center at the point and the radius
is the distance to the predicted solution.

4 Iterated Aitken Extrapolation

Looking at the list path, the solution at the end is not very accurate: the 1-norm of its solution
components equals 2.27e-01, which means that we have only one decimal place of accuracy.
If we consider the last seven points on the path, then we observe a very slowly converging
sequence of points. Aitken extrapolation is effective in accelerating logarithmically converging
sequences [12]. The function below contains the definition of Aitken extrapolation:

def Aitken(x):

"""

6

Applies Aitken extrapolation to the sequence x.

Returns the transformed sequence.

"""

y = [0.0 for _ in range(len(x)-2)]

for k in range(len(x)-2):

dxk = x[k+1] - x[k]

ddx = x[k+2] - 2*x[k+1] + x[k]

y[k] = x[k] - dxk*dxk/ddx

return y

The iterated Aitken extrapolation applies Aitken extrapolation repeatedly [25], as defined in the
function below:

def repeatedAitken(x, exa, verbose=True):

"""

Applies Aitken extrapolation repeatedly on the sequence x.

If verbose, then the error with the exact value in exa is shown.

Returns the last element.

"""

cffs = x

while len(cffs) > 2:

a = Aitken(cffs)

if verbose:

print(’on’, len(cffs), ’:’, a[len(a)-1], end=’’)

err = abs(a[len(a)-1] - exa)

print(f’ error :{err: .2e}’)

cffs = a

return cffs[0]

Executing repeatedAitken(ypt, 2.0) produces the sequence

on 7 : (2.0137784911225802+0.004510752594407998j) error : 1.45e-02

on 5 : (2.0026132752890415+0.001430742263173204j) error : 2.98e-03

on 3 : (2.0008714460040284+0.000612101736300566j) error : 1.06e-03

with similar results as repeatedAitken(xpt, 1.0). The error has decreased from 2.27e-01 to
1.69e-03. With relatively little effort, we gained two decimal places in the solution.

The rho algorithm and its iterated version produce similar results, but its application is
more delicate, as the default values of the interpolation points need to take the values of the t
parameter into account.

5 Building and Installing phcpy

Thanks to the efforts of Doug Torrance, both PHCpack and phcpy can be installed with the
package managers of Ubuntu.

Ad hoc makefiles, customized for Linux, Windows, and Mac OS X, were written during the
development of PHCpack, but became too cumbersome to maintain. GPRbuild is the project
manager of the GNAT toolchain, which made the building of the executable phc and the library

7

libPHCpack, along with its components in C and C++ (in particular: DEMiCs) more portable,
since version 2.4.85 [22]. Since version 2.4.88, PHCpack can be built via "alr get phcpack".

The development of phcpy started in python2, with the writing of extension modules, which
needed compilation, and later adjustments for python3. The compilation imposed restrictions
for Windows, as the Python interpreters on Windows are typically built with the Microsoft
compilers which are not interoperable with gcc. Version 1.1.3 of phcpy (the third major rewrite
of phcpy) used the Ctypes module. Once the libPHCpack is in its proper place, the instruction
"pip install ." in the folder where the setup.py is located will extend the Python interpreter
with phcpy, also on native Windows systems.

6 Conclusions

Extrapolating on Taylor series towards singular solutions, this paper illustrates the application
of numerical analytic continuation to solving polynomial systems. With phcpy, the algorithms
of [17] and [23] have become better accessible.

References

[1] N. Bliss and J. Verschelde. The method of Gauss-Newton to compute power series solutions
of polynomial homotopies. Linear Algebra and its Applications, 542:569–588, 2018.

[2] C. Brezinski. Accélération de suites à convergence logarithmique. C. R. Acad. Sc. Paris,
Série A, 273:727–730, 1971.

[3] B. Eröcal and W. Stein. The Sage project: Unifying free mathematical software to create a
viable alternative to Magma, Maple, Mathematica, and MATLAB. In K. Fukuda, J. van der
Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software - ICMS 2010, volume
6327 of Lecture Notes in Computer Science, pages 12–27. Springer-Verlag, 2010.

[4] E. Fabry. Sur les points singuliers d’une fonction donnée par son développement en série et
l’impossibilité du prolongement analytique dans des cas très généraux. Annales scientifiques
de l’École Normale Supérieure, 13:367–399, 1896.

[5] T. Gao, T. Y. Li, and M. Wu. Algorithm 846: MixedVol: a software package for mixed-
volume computation. ACM Trans. Math. Softw., 31(4):555–560, 2005.

[6] P. Henrici. An algorithm for analytic continuation. SIAM Journal on Numerical Analysis,
3(1):67–78, 1966.

[7] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-double precision floating point
arithmetic. In 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001), pages
155–162. IEEE Computer Society, 2001.

[8] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineer-
ing, 9(3):90–95, 2007.

[9] M. Joldes, J.-M. Muller, V. Popescu, and Tucker. W. CAMPARY: Cuda Multiple preci-
sion arithmetic library and applications. In Mathematical Software – ICMS 2016, the 5th
International Conference on Mathematical Software, pages 232–240. Springer-Verlag, 2016.

8

[10] D. Joyner, O. Čert́ık, A. Meurer, and B. E. Granger. Open source computer algebra systems:
SymPy. ACM Communications in Computer Algebra, 45(4):225–234, 2011.

[11] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and Jupyter De-
velopment Team. Jupyter Notebooks—a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning and Power in Academic
Publishing: Players, Agents, and Agendas, pages 87–90. IOS Press, 2016.

[12] C. Kowaleski. Acceleration de la convergence pour certaines suites a convergence loga-
rithmique. In M.G. de Bruin and H. van Rossum, editors, Padé Approximation and its
Applications, Amsterdam 1980, volume 888 of Lecture Notes in Mathematics, pages 263–
272. Springer-Verlag, 1981.

[13] I. Kuvychko. Complexplorer. Available at https://github.com/kuvychko/

complexplorer.

[14] T. Mizutani and A. Takeda. DEMiCs: A software package for computing the mixed vol-
ume via dynamic enumeration of all mixed cells. In M.E. Stillman, N. Takayama, and
J. Verschelde, editors, Software for Algebraic Geometry, volume 148 of The IMA Volumes
in Mathematics and its Applications, pages 59–79. Springer-Verlag, 2008.

[15] T. Ojika. Modified deflation algorithm for the solution of singular problems. I. A system of
nonlinear algebraic equations. Journal of Mathematical Analysis and Applications, 123:199–
221, 1987.

[16] J. Otto, A. Forbes, and J. Verschelde. Solving polynomial systems with phcpy. In Proceed-
ings of the 18th Python in Science Conference, pages 563–582, 2019.

[17] S. Telen, M. Van Barel, and J. Verschelde. A robust numerical path tracking algorithm for
polynomial homotopy continuation. SIAM Journal on Scientific Computing, 42(6):A3610–
A3637, 2020.

[18] L. N. Trefethen. Approximation Theory and Approximation Practice. Extented Edition.
SIAM, 2020.

[19] L. N. Trefethen. Numerical analytic continuation. Japan Journal of Industrial and Applied
Mathematics, 40(3):1587–1636, 2023.

[20] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math. Softw., 25(2):251–276, 1999. Available at
https://github.com/janverschelde/PHCpack.

[21] J. Verschelde. Modernizing PHCpack through phcpy. In P. de Buyl and N. Varoquaux, ed-
itors, Proceedings of the 6th European Conference on Python in Science (EuroSciPy 2013),
pages 71–76, 2014.

[22] J. Verschelde. Exporting Ada software to Julia and Python. Ada User Journal, 43(1):75–77,
2022.

9

[23] J. Verschelde and K. Viswanathan. Locating the closest singularity in a polynomial homo-
topy. In Proceedings of the 24th International Workshop on Computer Algebra in Scientific
Computing (CASC 2022), volume 13366 of Lecture Notes in Computer Science, pages 333–
352. Springer-Verlag, 2022.

[24] E. Wegert. Visual Complex Functions: An Introduction with Phase Portraits. Birkhäuser,
2012.

[25] E.J. Weniger. Nonlinear sequence transformations for the acceleration of convergence and
the summation of series. Computer Physics Reports, 10:189–371, 1989.

[26] P. Wynn. On a procrustean technique for the numerical transformation of slowly convergent
sequences and series. Proc. Camb. Phil. Soc., 52:663–672, 1956.

10

