Gift Wrapping for Pretropisms

Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Outline

Pretropisms and Solution Sets

- an illustrative example
- pretropisms and tropisms

Applying Gift Wrapping

- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

an illustrative example

$$f(x_1, x_2, x_3) = \begin{cases} (x_2 - x_1^2)(x_1^2 + x_2^2 + x_3^2 - 1)(x_1 - 0.5) = 0\\ (x_3 - x_1^3)(x_1^2 + x_2^2 + x_3^2 - 1)(x_2 - 0.5) = 0\\ (x_2 - x_1^2)(x_3 - x_1^3)(x_1^2 + x_2^2 + x_3^2 - 1)(x_3 - 0.5) = 0 \end{cases}$$

$$f^{-1}(\mathbf{0}) = Z = Z_2 \cup Z_1 \cup Z_0 = \{Z_{21}\} \cup \{Z_{11} \cup Z_{12} \cup Z_{13} \cup Z_{14}\} \cup \{Z_{01}\}$$

Z₂₁ is the sphere x₁² + x₂² + x₃² - 1 = 0,
Z₁₁ is the line (x₁ = 0.5, x₃ = 0.5³),
Z₁₂ is the line (x₁ = $\sqrt{0.5}$, x₂ = 0.5),
Z₁₃ is the line (x₁ = $-\sqrt{0.5}$, x₂ = 0.5),
Z₁₄ is the twisted cubic (x₂ - x₁² = 0, x₃ - x₁³ = 0),
Z₀₁ is the point (x₁ = 0.5, x₂ = 0.5, x₃ = 0.5).

4 D N 4 B N 4 B N 4 B

numerical irreducible decomposition

Used in two papers in numerical algebraic geometry:

- first cascade of homotopies: 197 paths
 A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.
- equation-by-equation solver: 13 paths
 A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving polynomial systems equation by equation. In Algorithms in Algebraic Geometry, Volume 146 of The IMA Volumes in Mathematics and Its Applications, pages 133–152, Springer-Verlag, 2008.

The mixed volume of the Newton polytopes of this system is 124. By theorem A of Bernshtein, the mixed volume is an upper bound on the number of isolated solutions.

3

・ロン ・四 ・ ・ ヨン

three Newton polytopes

$$f(x_1, x_2, x_3) = \begin{cases} (x_2 - x_1^2)(x_1^2 + x_2^2 + x_3^2 - 1)(x_1 - 0.5) = 0\\ (x_3 - x_1^3)(x_1^2 + x_2^2 + x_3^2 - 1)(x_2 - 0.5) = 0\\ (x_2 - x_1^2)(x_3 - x_1^3)(x_1^2 + x_2^2 + x_3^2 - 1)(x_3 - 0.5) = 0 \end{cases}$$

æ

(日) (四) (三) (三)

looking for solution curves

The twisted cubic is $(x_1 = t, x_2 = t^2, x_3 = t^3)$.

We look for solutions of the form

$$\left\{ \begin{array}{ll} x_1 = t^{v_1}, & v_1 > 0, \\ x_2 = c_2 t^{v_2}, & c_2 \in \mathbb{C}^*, \\ x_3 = c_3 t^{v_3}, & c_3 \in \mathbb{C}^*. \end{array} \right.$$

Substitute $x_1 = t, x_2 = c_2 t^2, x_3 = c_3 t^3$ into *f*

$$f(x_1 = t, x_2 = c_2 t^2, x_3 = c_3 t^3) = \begin{cases} (0.5c_2 - 0.5)t^2 + O(t^3) = 0\\ (0.5c_3 - 0.5)t^3 + O(t^5) = 0\\ 0.5(c_2 - 1.0)(c_3 - 1.0)t^5 + O(t^7) \end{cases}$$

 \rightarrow conditions on c_2 and c_3 .

How to find $(v_1, v_2, v_3) = (1, 2, 3)$?

faces of Newton polytopes

Looking at the Newton polytopes in the direction $\mathbf{v} = (1, 2, 3)$:

Selecting those monomials supported on the faces

$$\partial_{\mathbf{v}} f(x_1, x_2, x_3) = \begin{cases} 0.5x_2 - 0.5x_1^2 = 0\\ 0.5x_3 - 0.5x_1^3 = 0\\ -0.5x_2x_1^3 - 0.5x_3x_1^2 + 0.5x_3x_2 + 0.5x_1^5 = 0 \end{cases}$$

4 A N

degenerating the sphere

$$f(x_1, x_2, x_3) = \begin{cases} (x_2 - x_1^2)(x_1^2 + x_2^2 + x_3^2 - 1)(x_1 - 0.5) = 0\\ (x_3 - x_1^3)(x_1^2 + x_2^2 + x_3^2 - 1)(x_2 - 0.5) = 0\\ (x_2 - x_1^2)(x_3 - x_1^3)(x_1^2 + x_2^2 + x_3^2 - 1)(x_3 - 0.5) = 0 \end{cases}$$

As
$$x_1 = t \to 0$$
:
 $\partial_{(1,0,0)} f(x_1, x_2, x_3) \begin{cases} x_2(x_2^2 + x_3^2 - 1)(-0.5) = 0 \\ x_3(x_2^2 + x_3^2 - 1)(x_2 - 0.5) = 0 \\ x_2 x_3(x_2^2 + x_3^2 - 1)(x_3 - 0.5) = 0 \end{cases}$

As
$$x_2 = s \to 0$$
:
 $\partial_{(0,1,0)} f(x_1, x_2, x_3) \begin{cases} -x_1^2 (x_1^2 + x_3^2 - 1)(x_1 - 0.5) = 0 \\ (x_3 - x_1^3)(x_1^2 + x_3^2 - 1)(-0.5) = 0 \\ -x_1^2 (x_3 - x_1^3)(x_1^2 + x_3^2 - 1)(x_3 - 0.5) = 0 \end{cases}$

3

more faces of Newton polytopes

Looking at the Newton polytopes along v = (1,0,0) and v = (0,1,0):

$$\begin{aligned} \partial_{(1,0,0)} f(x_1, x_2, x_3) &= & \partial_{(0,1,0)} f(x_1, x_2, x_3) = \\ \begin{cases} x_2(x_2^2 + x_3^2 - 1)(-0.5) \\ x_3(x_2^2 + x_3^2 - 1)(x_2 - 0.5) \\ x_2 x_3(x_2^2 + x_3^2 - 1)(x_3 - 0.5) \end{cases} & \begin{cases} -x_1^2(x_1^2 + x_3^2 - 1)(x_1 - 0.5) \\ (x_3 - x_1^3)(x_1^2 + x_3^2 - 1)(-0.5) \\ -x_1^2(x_3 - x_1^3)(x_1^2 + x_3^2 - 1)(x_3 - 0.5) \end{aligned}$$

faces of faces

The sphere degenerates to circles at the coordinate planes.

$$\begin{aligned} \partial_{(1,0,0)} f(x_1, x_2, x_3) &= & \partial_{(0,1,0)} f(x_1, x_2, x_3) = \\ \begin{cases} x_2(x_2^2 + x_3^2 - 1)(-0.5) \\ x_3(x_2^2 + x_3^2 - 1)(x_2 - 0.5) \\ x_2x_3(x_2^2 + x_3^2 - 1)(x_3 - 0.5) \end{cases} \quad \begin{cases} \partial_{(0,1,0)} f(x_1, x_2, x_3) = \\ -x_1^2(x_1^2 + x_3^2 - 1)(x_1 - 0.5) \\ (x_3 - x_1^3)(x_1^2 + x_3^2 - 1)(-0.5) \\ -x_1^2(x_3 - x_1^3)(x_1^2 + x_3^2 - 1)(x_3 - 0.5) \end{cases} \end{aligned}$$

Degenerating even more:

$$\partial_{(0,1,0)}\partial_{(1,0,0)}f(x_1,x_2,x_3) = \begin{cases} x_2(x_3^2-1)(-0.5) \\ x_3(x_3^2-1)(-0.5) \\ x_2x_3(x_3^2-1)(x_3-0.5) \end{cases}$$

The factor $x_3^2 - 1$ is shared with $\partial_{(1,0,0)}\partial_{(0,1,0)}f(x_1, x_2, x_3)$.

э

(日)

representing a solution surface

The sphere is two dimensional, x_1 and x_2 are free:

$$\begin{cases} x_1 = t_1 \\ x_2 = t_2 \\ x_3 = 1 + c_1 t_1^2 + c_2 t_2^2. \end{cases}$$

For $t_1 = 0$ and $t_2 = 0$, $x_3 = 1$ is a solution of $x^3 - 1 = 0$.

Substituting $(x_1 = t_1, x_2 = t_2, x_3 = 1 + c_1 t_1^2 + c_2 t_2^2)$ into the original system gives linear conditions on the coefficients of the second term: $c_1 = -0.5$ and $c_2 = -0.5$.

イロン 不得 とくほ とくほ とうほう

Outline

Pretropisms and Solution Sets
 an illustrative example

pretropisms and tropisms

Applying Gift Wrapping

- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

notations

Given $p, q \in \mathbb{C}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}]$, do p and q have a common factor? For example:

$$\begin{cases} p = (x^2 + y^2 + z^2 - 1)(y - x^2) \\ q = (x^2 + y^2 + z^2 - 1)(z - x^3) \end{cases}$$

In our polyhedral approach, we write *p* and *q* as

$$p(x, y, z) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} x^{a_1} y^{a_2} z^{a_3}$$
 and $q(x, y, z) = \sum_{\mathbf{b} \in A} c_{\mathbf{b}} x^{b_1} y^{b_2} z^{b_3}$

where $A = \{ \mathbf{a} \in \mathbb{Z}^3 \mid c_{\mathbf{a}} \neq 0 \}$ and $B = \{ \mathbf{b} \in \mathbb{Z}^3 \mid c_{\mathbf{b}} \neq 0 \}$ are the support sets respectively of p and q.

A spans the Newton polytope P = conv(A), B spans Q = conv(B).

inner normals and initial forms

Denote by $\langle \cdot, \cdot \rangle$ the inner product: $\langle \mathbf{a}, \mathbf{b} \rangle = a_1 b_1 + a_2 b_2 + a_3 b_3$. For $\mathbf{v} \neq \mathbf{0}$, the face $\operatorname{in}_{\mathbf{v}} P$ of $P = \operatorname{conv}(A)$ is spanned by $\operatorname{in}_{\mathbf{v}} A$ with

$$\mathrm{in}_{\mathbf{v}} \mathcal{A} = \{ \mathbf{a} \in \mathcal{A} \mid \langle \mathbf{a}, \mathbf{v} \rangle = \min_{\mathbf{b} \in \mathcal{A}} \langle \mathbf{b}, \mathbf{v} \rangle \}.$$

We use invA because of *initial forms* of polynomials:

$$\operatorname{in}_{\mathbf{v}} \rho(x, y, z) = \sum_{\mathbf{a} \in \operatorname{in}_{\mathbf{v}} A} c_{\mathbf{a}} x^{a_1} y^{a_2} z^{a_3} \quad \text{where} \quad \rho(x, y, z) = \sum_{\mathbf{a} \in A} c_{\mathbf{a}} x^{a_1} y^{a_2} z^{a_3}.$$

We may take **v**, with integer coordinates v_1 , v_2 , and v_3 , normalized so that $gcd(v_1, v_2, v_3) = 1$. This normalization gives unique normals to all proper faces

This normalization gives unique normals to all proper facets.

pretropisms

Let (A, B) be two supports. A pretropism for (A, B) is a vector $\mathbf{v} \neq \mathbf{0}$: $\# in_{\mathbf{v}}A \ge 2$ and $\# in_{\mathbf{v}}B \ge 2$. Denote by T(A, B) the set { $\mathbf{v} \neq 0$ | $\# in_{\mathbf{v}}A \ge 2$ and $\# in_{\mathbf{v}}B \ge 2$ }. A pretropism is a candidate for a tropism. A tropism \mathbf{v} is a pretropism for which a root of the initial form system $in_{\mathbf{v}}f(\mathbf{x}) = \mathbf{0}$ determines the leading coefficients of a Puiseux series expansion of a solution component of $f(\mathbf{x}) = \mathbf{0}$.

Proposition

If $T(A, B) = \emptyset$, then for any two Laurent polynomials p and q with respective support sets A and B, p and q have no common factor.

Proof. Suppose *p* and *q* have a nontrivial common factor *f*, i.e.: $p = p_1 f$ and $q = q_1 f$. Denote the Newton polytope of *f* by *F*, then $P = P_1 + F$ and $Q = Q_1 + F$, where *P*, P_1 , *Q*, and Q_1 are the respective Newton polytopes of *p*, p_1 , *q*, and q_1 . All normals to faces of *F* are tropisms.

・ロン ・ 四 と ・ ヨ と ・ ヨ

predicting a common factor

Recall the example:

$$\begin{cases} p = (x^2 + y^2 + z^2 - 1)(y - x^2) \\ q = (x^2 + y^2 + z^2 - 1)(z - x^3) \end{cases}$$

The set $\{(1,0,0), (0,1,0), (0,0,1), (-1,-1,-1)\}$ contains all normalized vectors to the facets of the simplex, the Newton polytope of the common factor of *p* and *q*.

Among the curves common to *p* and *q* we get the equations of the twisted cubic via the initial forms $in_{(-1,-2,-3)}p = z^2(y - x^2)$ and $in_{(+1,+2,+3)}p = -1(y - x^2)$.

classifying pretropisms

Redundant tropisms: for curves restrict to first positive component. For surfaces: every edge of the Newton polytope of a common factor will also be a pretropism.

For two Newton polytopes *P* and *Q*, we classify pretropisms as follows:

- A facet pretropism is an inner normal to a facet common to both P and Q.
 We call this common facet a tropical prefacet.
- An *edge pretropism* is a pretropism not contained in any tropical prefacet.

Edges of *P* and *Q* that are parallel to each other are always contained in a larger face tuple $(in_v P, in_v Q)$ for some pretropism **v**.

Outline

Pretropisms and Solution Sets

- an illustrative example
- pretropisms and tropisms

Applying Gift Wrapping

computing cones of pretropisms

- sketching an algorithm in pseudocode
- running a test program in PHCpack

applying gift wrapping

Recall the geometric intuition of gift wrapping:

- view a supporting hyperplane as wrapping paper,
- the paper first touches a vertex, then an edge, etc.
- planes supporting facets are rotated along ridges.

Consider as given a tuple of Newton polytopes, the pretropisms correspond to those

- facets of the Minkowski sum of the Newton polytopes,
- that are spanned by sums of edges of the polytopes.

On the complexity:

- Storing the entire face lattice of a Newton polytope of a sparse polynomial has an acceptable complexity.
- Storing the entire face lattice of the sum of the Newton polytopes is not efficient and most likely not even desirable.

two Newton polytopes in 3-space: facet pretropisms

Given are two support sets *A* and *B*, $A \in \mathbb{Z}^{3 \times n_A}$ and $B \in \mathbb{Z}^{3 \times n_B}$.

Could the polynomials p (supported on A) and q (supported on B) have a common factor?

This question is equivalent for two facets:

```
F_A of conv(A) and F_B of conv(B)
```

to share the same inner normal.

If the components of each inner normal vector to a facet are normalized so their greatest common divisor equals one, then the problem of finding a facet pretropism is reduced to sorting:

Ø Merge the sorted lists of inner normals.

two Newton polytopes in 3-space: edge pretropisms

Given are two support sets *A* and *B*, $A \in \mathbb{Z}^{3 \times n_A}$ and $B \in \mathbb{Z}^{3 \times n_B}$.

The search for a pretropism starts at a facet F_A of conv(A):

- The vertex points that span the facet are ordered: two consecutive vertex points of the facet span an edge e_A.
- Two neighboring facets are connected through exactly one edge: the facet normal v of F_A and the normal u to the neighboring facet span the inner normal cone of the connecting edge e_A.

With e_A and its cone spanned by $\{\mathbf{u}, \mathbf{v}\}$, we explore *B*:

- For random real $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}} > 0$, let $\mathbf{w} = \lambda_{\mathbf{u}} \mathbf{u} + \lambda_{\mathbf{v}} \mathbf{v}$, then $\operatorname{in}_{\mathbf{w}} B = \{\mathbf{b}\}$.
- Run over all edges e_B incident to **b** and check the pair (e_A, e_B) : if the intersection of the inner normal cones to e_A and e_B is not empty, then their intersection contains a pretropism.

イロン 不良 とくほう イロン・ヨー

Outline

Pretropisms and Solution Sets

- an illustrative example
- pretropisms and tropisms

Applying Gift Wrapping

computing cones of pretropisms

sketching an algorithm in pseudocode

running a test program in PHCpack

sketching an algorithm in pseudocode

Input:
$$(A, B)$$
, $A \in \mathbb{Z}^{3 \times n_A}$, $B \in \mathbb{Z}^{3 \times n_B}$.
Output: $T_f(A, B)$; $T_e(A, B)$.

1.	$F_A := \operatorname{conv}(A); F_B := \operatorname{conv}(B);$
2.	$T_f(A, B) := \{ \mathbf{v} \mid \mathbf{v} \text{ is normal to } f \in F_A \cap F_B \};$
3.	for all v normal to facet $f \in F_A$, $\mathbf{v} \notin T_f(A, B)$ do
3.1	let e_A be edge of A, not visited before;
3.2	let u: $\mathbf{e}_{A} = \mathrm{in}_{\mathbf{u}}A \cap \mathrm{in}_{\mathbf{v}}A$;
3.3	let b be a vertex of $in_{u+v}B$;
3.4	for all edges <i>e_B</i> incident to b do
3.4.1	if $\mathbf{w} \perp (e_{\! A}, e_{\! B})$ is edge pretropism then
3.4.1.1	${\mathcal T}_{m{e}}({\mathcal A},{\mathcal B}):={\mathcal T}_{m{e}}({\mathcal A},{\mathcal B})\cup\{{f w}\};$
3.4.1.2	set b to unvisited vertex of <i>B</i> ; goto 3.4;

2

(a)

a crude cost analysis

Assuming a uniform cost of arithmetic (\leftrightarrow multiprecision):

• The cost of computing all facet pretropisms:

Let N_A = #facets of conv(A) and N_B = #facets of conv(B), set $M = \max(N_A, N_B)$, then the cost reduces to sorting, which is $O(M \log_2(M))$.

• The cost of computing all edge pretropisms:

Let N_A = #edges of conv(A) and N_B = #edges of conv(B), set M = max(N_A , N_B), then the cost reduces to making combinations: $O(M^2)$

then the cost reduces to making combinations: $O(M^2)$.

For a sharper bound, let *m* be the maximum number of edges per facet, then the cost for all edge pretropisms becomes O(Mm).

Outline

Pretropisms and Solution Sets

- an illustrative example
- pretropisms and tropisms

Applying Gift Wrapping

- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

running a test program in PHCpack

The code for pretropisms is not (yet) wrapped to phopy.

Running the test program ts_pretrop on the illustrative example:

```
The list of facet pretropisms :
0 1 0
0 0 1
-1 -1 -1
1 0 0
```

which corresponds to the inner normals of a simplex, the Newton polytope of the common factor $x_1^2 + x_2^2 + x_3^2 - 1$.

pretropisms for the space curves

Take the first two polynomials of the illustrative example:

p:
$$(y-x**2)*(x**2 + y**2 + z**2 - 1)*(x - 0.5);$$

q: $(z-x**3)*(x**2 + y**2 + z**2 - 1)*(y - 0.5);$

The output of the test program ts_pretrop contains

```
The edge tropisms via giftwrapping :

0 0 -1

-1 -2 -3

-1 -3 -3

1 2 3

0 -1 0
```

We recognize the twisted cubic (t^1, t^2, t^3) .