Gift Wrapping for Pretropisms

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Outline

(1) Pretropisms and Solution Sets

- an illustrative example
- pretropisms and tropisms
(2) Applying Gift Wrapping
- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

an illustrative example

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{r}
\left(x_{2}-x_{1}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{1}-0.5\right)=0 \\
\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{2}-0.5\right)=0 \\
\left(x_{2}-x_{1}^{2}\right)\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right)=0
\end{array}\right. \\
& f^{-1}(\mathbf{0})=Z=Z_{2} \cup Z_{1} \cup Z_{0}=\left\{Z_{21}\right\} \cup\left\{Z_{11} \cup Z_{12} \cup Z_{13} \cup Z_{14}\right\} \cup\left\{Z_{01}\right\}
\end{aligned}
$$

(1) Z_{21} is the sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1=0$,
(2) Z_{11} is the line $\left(x_{1}=0.5, x_{3}=0.5^{3}\right)$,
(3) Z_{12} is the line $\left(x_{1}=\sqrt{0.5}, x_{2}=0.5\right)$,
(9) Z_{13} is the line ($x_{1}=-\sqrt{0.5}, x_{2}=0.5$),
(3) Z_{14} is the twisted cubic $\left(x_{2}-x_{1}^{2}=0, x_{3}-x_{1}^{3}=0\right)$,
(6) Z_{01} is the point $\left(x_{1}=0.5, x_{2}=0.5, x_{3}=0.5\right)$.

numerical irreducible decomposition

Used in two papers in numerical algebraic geometry:

- first cascade of homotopies: 197 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical
decomposition of the solution sets of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6):2022-2046, 2001.
- equation-by-equation solver: 13 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving polynomial systems equation by equation. In Algorithms in Algebraic Geometry, Volume 146 of The IMA Volumes in Mathematics and Its Applications, pages 133-152, Springer-Verlag, 2008.

The mixed volume of the Newton polytopes of this system is 124. By theorem A of Bernshteǐn, the mixed volume is an upper bound on the number of isolated solutions.

three Newton polytopes

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{aligned}
\left(x_{2}-x_{1}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{1}-0.5\right) & =0 \\
\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{2}-0.5\right) & =0 \\
\left(x_{2}-x_{1}^{2}\right)\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right) & =0
\end{aligned}\right.
$$

looking for solution curves

The twisted cubic is $\left(x_{1}=t, x_{2}=t^{2}, x_{3}=t^{3}\right)$.
We look for solutions of the form

$$
\begin{cases}x_{1}=t^{v_{1}}, & v_{1}>0, \\ x_{2}=c_{2} t^{v_{2}}, & c_{2} \in \mathbb{C}^{*}, \\ x_{3}=c_{3} t^{v_{3}}, & c_{3} \in \mathbb{C}^{*}\end{cases}
$$

Substitute $x_{1}=t, x_{2}=c_{2} t^{2}, x_{3}=c_{3} t^{3}$ into f

$$
f\left(x_{1}=t, x_{2}=c_{2} t^{2}, x_{3}=c_{3} t^{3}\right)=\left\{\begin{array}{l}
\left(0.5 c_{2}-0.5\right) t^{2}+O\left(t^{3}\right)=0 \\
\left(0.5 c_{3}-0.5\right) t^{3}+O\left(t^{5}\right)=0 \\
0.5\left(c_{2}-1.0\right)\left(c_{3}-1.0\right) t^{5}+O\left(t^{7}\right)
\end{array}\right.
$$

\rightarrow conditions on c_{2} and c_{3}.
How to find $\left(v_{1}, v_{2}, v_{3}\right)=(1,2,3)$?
faces of Newton polytopes
Looking at the Newton polytopes in the direction $\mathbf{v}=(1,2,3)$:

Selecting those monomials supported on the faces

$$
\partial_{\mathrm{v}} f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{aligned}
0.5 x_{2}-0.5 x_{1}^{2} & =0 \\
0.5 x_{3}-0.5 x_{1}^{3} & =0 \\
-0.5 x_{2} x_{1}^{3}-0.5 x_{3} x_{1}^{2}+0.5 x_{3} x_{2}+0.5 x_{1}^{5} & =0
\end{aligned}\right.
$$

degenerating the sphere

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{aligned}
\left(x_{2}-x_{1}^{2}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{1}-0.5\right) & =0 \\
\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{2}-0.5\right) & =0 \\
\left(x_{2}-x_{1}^{2}\right)\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right) & =0
\end{aligned}\right.
$$

As $x_{1}=t \rightarrow 0$:

$$
\partial_{(1,0,0)} f\left(x_{1}, x_{2}, x_{3}\right)\left\{\begin{aligned}
x_{2}\left(x_{2}^{2}+x_{3}^{2}-1\right)(-0.5) & =0 \\
x_{3}\left(x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{2}-0.5\right) & =0 \\
x_{2} x_{3}\left(x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right) & =0
\end{aligned}\right.
$$

As $x_{2}=s \rightarrow 0$:

$$
\partial_{(0,1,0)} f\left(x_{1}, x_{2}, x_{3}\right)\left\{\begin{aligned}
-x_{1}^{2}\left(x_{1}^{2}+x_{3}^{2}-1\right)\left(x_{1}-0.5\right) & =0 \\
\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{3}^{2}-1\right)(-0.5) & =0 \\
-x_{1}^{2}\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right) & =0
\end{aligned}\right.
$$

more faces of Newton polytopes

Looking at the Newton polytopes along $\mathbf{v}=(\mathbf{1 , 0 , 0})$ and $\mathbf{v}=(0,1,0)$:

$$
\begin{aligned}
& \left\{\begin{aligned}
\\
x_{3}\left(x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{2}-0.5\right) \\
x_{2} x_{3}\left(x_{2}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right)
\end{aligned}\right.
\end{aligned}\left\{\begin{array}{r}
x_{1}\left(x_{1}^{2}\right) \\
-x_{1}^{2}\left(x_{3}-x_{1}^{3}\right)\left(x_{1}^{2}+x_{3}^{2}-1\right)\left(x_{3}-0.5\right)\left(x_{1}^{2}+x_{3}^{2}-1\right)(-0.5)
\end{array}\right.
$$

faces of faces

The sphere degenerates to circles at the coordinate planes.

Degenerating even more:

$$
\partial_{(0,1,0)} \partial_{(1,0,0)} f\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{r}
x_{2}\left(x_{3}^{2}-1\right)(-0.5) \\
x_{3}\left(x_{3}^{2}-1\right)(-0.5) \\
x_{2} x_{3}\left(x_{3}^{2}-1\right)\left(x_{3}-0.5\right)
\end{array}\right.
$$

The factor $x_{3}^{2}-1$ is shared with $\partial_{(1,0,0)} \partial_{(0,1,0)} f\left(x_{1}, x_{2}, x_{3}\right)$.

representing a solution surface

The sphere is two dimensional, x_{1} and x_{2} are free:

$$
\left\{\begin{array}{l}
x_{1}=t_{1} \\
x_{2}=t_{2} \\
x_{3}=1+c_{1} t_{1}^{2}+c_{2} t_{2}^{2}
\end{array}\right.
$$

For $t_{1}=0$ and $t_{2}=0, x_{3}=1$ is a solution of $x^{3}-1=0$.
Substituting $\left(x_{1}=t_{1}, x_{2}=t_{2}, x_{3}=1+c_{1} t_{1}^{2}+c_{2} t_{2}^{2}\right)$ into the original system gives linear conditions on the coefficients of the second term: $c_{1}=-0.5$ and $c_{2}=-0.5$.

Outline

(1) Pretropisms and Solution Sets

- an illustrative example
- pretropisms and tropisms
(2) Applying Gift Wrapping
- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

notations

Given $p, q \in \mathbb{C}\left[x^{ \pm 1}, y^{ \pm 1}, z^{ \pm 1}\right]$, do p and q have a common factor?
For example:

$$
\left\{\begin{array}{l}
p=\left(x^{2}+y^{2}+z^{2}-1\right)\left(y-x^{2}\right) \\
q=\left(x^{2}+y^{2}+z^{2}-1\right)\left(z-x^{3}\right)
\end{array}\right.
$$

In our polyhedral approach, we write p and q as

$$
p(x, y, z)=\sum_{\mathbf{a} \in A} c_{\mathbf{a}} x^{a_{1}} y^{a_{2}} z^{a_{3}} \quad \text { and } \quad q(x, y, z)=\sum_{\mathbf{b} \in A} c_{\mathbf{b}} x^{b_{1}} y^{b_{2}} z^{b_{3}}
$$

where $A=\left\{\mathbf{a} \in \mathbb{Z}^{3} \mid c_{\mathbf{a}} \neq 0\right\}$ and $B=\left\{\mathbf{b} \in \mathbb{Z}^{3} \mid c_{\mathbf{b}} \neq 0\right\}$ are the support sets respectively of p and q.
A spans the Newton polytope $P=\operatorname{conv}(A), B$ spans $Q=\operatorname{conv}(B)$.

inner normals and initial forms

Denote by $\langle\cdot, \cdot\rangle$ the inner product: $\langle\mathbf{a}, \mathbf{b}\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$.
For $\mathbf{v} \neq \mathbf{0}$, the face $\mathrm{in}_{\mathbf{v}} P$ of $P=\operatorname{conv}(A)$ is spanned by $\mathrm{in}_{\mathbf{v}} A$ with

$$
\operatorname{in}_{\mathbf{v}} A=\left\{\mathbf{a} \in A \mid\langle\mathbf{a}, \mathbf{v}\rangle=\min _{\mathbf{b} \in A}\langle\mathbf{b}, \mathbf{v}\rangle\right\} .
$$

We use $\mathrm{in}_{\mathrm{v}} A$ because of initial forms of polynomials:

$$
\operatorname{in}_{\mathbf{v}} p(x, y, z)=\sum_{\mathbf{a} \in \mathrm{in}_{v} A} c_{\mathbf{a}} x^{a_{1}} y^{a_{2}} z^{a_{3}} \quad \text { where } \quad p(x, y, z)=\sum_{\mathbf{a} \in A} c_{\mathbf{a}} x^{a_{1}} y^{a_{2}} z^{a_{3}}
$$

We may take \mathbf{v}, with integer coordinates v_{1}, v_{2}, and v_{3}, normalized so that $\operatorname{gcd}\left(v_{1}, v_{2}, v_{3}\right)=1$. This normalization gives unique normals to all proper facets.

pretropisms

Let (A, B) be two supports. A pretropism for (A, B) is a vector $\mathbf{v} \neq \mathbf{0}$:
$\# \mathrm{in}_{\mathrm{v}} A \geq 2$ and $\# \mathrm{in}_{\mathrm{v}} B \geq 2$. Denote by $T(A, B)$ the set $\{\mathbf{v} \neq 0 \mid$ $\# \mathrm{in}_{\mathrm{v}} A \geq 2$ and $\left.\# \mathrm{in}_{\mathrm{v}} B \geq 2\right\}$. A pretropism is a candidate for a tropism. A tropism \mathbf{v} is a pretropism for which a root of the initial form system $\mathrm{in}_{\mathbf{v}} f(\mathbf{x})=\mathbf{0}$ determines the leading coefficients of a Puiseux series expansion of a solution component of $f(\mathbf{x})=\mathbf{0}$.

Proposition

If $T(A, B)=\emptyset$, then for any two Laurent polynomials p and q with respective support sets A and B, p and q have no common factor.

Proof. Suppose p and q have a nontrivial common factor f, i.e.: $p=p_{1} f$ and $q=q_{1} f$. Denote the Newton polytope of f by F, then $P=P_{1}+F$ and $Q=Q_{1}+F$, where P, P_{1}, Q, and Q_{1} are the respective Newton polytopes of p, p_{1}, q, and q_{1}. All normals to faces of F are tropisms.

predicting a common factor

Recall the example:

$$
\left\{\begin{array}{l}
p=\left(x^{2}+y^{2}+z^{2}-1\right)\left(y-x^{2}\right) \\
q=\left(x^{2}+y^{2}+z^{2}-1\right)\left(z-x^{3}\right)
\end{array}\right.
$$

The set $\{(1,0,0),(0,1,0),(0,0,1),(-1,-1,-1)\}$ contains all normalized vectors to the facets of the simplex, the Newton polytope of the common factor of p and q.

Among the curves common to p and q we get the equations of the twisted cubic via the initial forms $\operatorname{in}_{(-1,-2,-3)} p=z^{2}\left(y-x^{2}\right)$ and $\operatorname{in}_{(+1,+2,+3)} p=-1\left(y-x^{2}\right)$.

classifying pretropisms

Redundant tropisms: for curves restrict to first positive component.
For surfaces: every edge of the Newton polytope of a common factor will also be a pretropism.

For two Newton polytopes P and Q, we classify pretropisms as follows:

- A facet pretropism is an inner normal to a facet common to both P and Q. We call this common facet a tropical prefacet.
- An edge pretropism is a pretropism not contained in any tropical prefacet.
Edges of P and Q that are parallel to each other are always contained in a larger face tuple $\left(\mathrm{in}_{\mathbf{v}} P, \mathrm{in}_{\mathbf{v}} Q\right)$ for some pretropism \mathbf{v}.

Outline

(1) Pretropisms and Solution Sets
 - an illustrative example - pretropisms and tropisms

(2) Applying Gift Wrapping

- computing cones of pretropisms
- sketching an algorithm in pseudocode - running a test program in PHCpack

applying gift wrapping

Recall the geometric intuition of gift wrapping:

- view a supporting hyperplane as wrapping paper,
- the paper first touches a vertex, then an edge, etc.
- planes supporting facets are rotated along ridges.

Consider as given a tuple of Newton polytopes, the pretropisms correspond to those

- facets of the Minkowski sum of the Newton polytopes,
- that are spanned by sums of edges of the polytopes.

On the complexity:

- Storing the entire face lattice of a Newton polytope of a sparse polynomial has an acceptable complexity.
- Storing the entire face lattice of the sum of the Newton polytopes is not efficient and most likely not even desirable.

two Newton polytopes in 3-space: facet pretropisms

Given are two support sets A and $B, A \in \mathbb{Z}^{3 \times n_{A}}$ and $B \in \mathbb{Z}^{3 \times n_{B}}$.
Could the polynomials p (supported on A) and q (supported on B) have a common factor?

This question is equivalent for two facets:

$$
F_{A} \text { of } \operatorname{conv}(A) \text { and } F_{B} \text { of } \operatorname{conv}(B)
$$

to share the same inner normal.
If the components of each inner normal vector to a facet are normalized so their greatest common divisor equals one, then the problem of finding a facet pretropism is reduced to sorting:
(1) Sort the inner normals of the facets to A and B lexicographically.
(2) Merge the sorted lists of inner normals.

two Newton polytopes in 3-space: edge pretropisms

Given are two support sets A and $B, A \in \mathbb{Z}^{3 \times n_{A}}$ and $B \in \mathbb{Z}^{3 \times n_{B}}$.
The search for a pretropism starts at a facet F_{A} of $\operatorname{conv}(A)$:

- The vertex points that span the facet are ordered: two consecutive vertex points of the facet span an edge e_{A}.
- Two neighboring facets are connected through exactly one edge: the facet normal \mathbf{v} of F_{A} and the normal \mathbf{u} to the neighboring facet span the inner normal cone of the connecting edge e_{A}.
With e_{A} and its cone spanned by $\{\mathbf{u}, \mathbf{v}\}$, we explore B :
- For random real $\lambda_{\mathbf{u}}, \lambda_{\mathbf{v}}>0$, let $\mathbf{w}=\lambda_{\mathbf{u}} \mathbf{u}+\lambda_{\mathbf{v}} \mathbf{v}$, then $\mathrm{in}_{\mathbf{w}} B=\{\mathbf{b}\}$.
- Run over all edges e_{B} incident to \mathbf{b} and check the pair $\left(e_{A}, e_{B}\right)$: if the intersection of the inner normal cones to e_{A} and e_{B} is not empty, then their intersection contains a pretropism.

Outline

(1) Pretropisms and Solution Sets
 - an illustrative example
 - pretropisms and tropisms

(2) Applying Gift Wrapping

- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

sketching an algorithm in pseudocode

Input: $(A, B), A \in \mathbb{Z}^{3 \times n_{A}}, B \in \mathbb{Z}^{3 \times n_{B}}$.
Output: $T_{f}(A, B) ; T_{e}(A, B)$.
1.
$F_{A}:=\operatorname{conv}(A) ; F_{B}:=\operatorname{conv}(B) ;$
2. $T_{f}(A, B):=\left\{\mathbf{v} \mid \mathbf{v}\right.$ is normal to $\left.f \in F_{A} \cap F_{B}\right\}$;
3. for all \mathbf{v} normal to facet $f \in F_{A}, \mathbf{v} \notin T_{f}(A, B)$ do
3.1
3.2
$3.3 \quad$ let \mathbf{b} be a vertex of $\mathrm{in}_{\mathbf{u}+\mathbf{v}} B$;
3.4 for all edges e_{B} incident to \mathbf{b} do
3.4.1
3.4.1.1
if $\mathbf{w} \perp\left(e_{A}, e_{B}\right)$ is edge pretropism then
3.4.1.2 let e_{A} be edge of A, not visited before; let $\mathbf{u}: e_{A}=\mathrm{in}_{\mathbf{u}} A \cap \mathrm{in}_{\mathbf{v}} A$; $T_{e}(A, B):=T_{e}(A, B) \cup\{\mathbf{w}\} ;$
set \mathbf{b} to unvisited vertex of B; goto 3.4;

a crude cost analysis

Assuming a uniform cost of arithmetic (\leftrightarrow multiprecision):

- The cost of computing all facet pretropisms:

Let $N_{A}=$ \#facets of $\operatorname{conv}(A)$ and $N_{B}=$ \#facets of $\operatorname{conv}(B)$, set $M=\max \left(N_{A}, N_{B}\right)$, then the cost reduces to sorting, which is $O\left(M \log _{2}(M)\right)$.

- The cost of computing all edge pretropisms:

Let $N_{A}=\#$ edges of $\operatorname{conv}(A)$ and $N_{B}=\#$ edges of $\operatorname{conv}(B)$, set $M=\max \left(N_{A}, N_{B}\right)$, then the cost reduces to making combinations: $O\left(M^{2}\right)$.

For a sharper bound, let m be the maximum number of edges per facet, then the cost for all edge pretropisms becomes $O(\mathrm{Mm})$.

Outline

(4) Pretropisms and Solution Sets
 - an illustrative example
 - pretropisms and tropisms

(2) Applying Gift Wrapping

- computing cones of pretropisms
- sketching an algorithm in pseudocode
- running a test program in PHCpack

running a test program in PHCpack

The code for pretropisms is not (yet) wrapped to phcpy.
Running the test program ts_pretrop on the illustrative example:

```
The list of facet pretropisms :
    0 1 0
    0 0 1
    -1 -1 -1
    1 0
```

which corresponds to the inner normals of a simplex, the Newton polytope of the common factor $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1$.

pretropisms for the space curves

Take the first two polynomials of the illustrative example:

$$
\begin{aligned}
& \mathrm{p}:(\mathrm{y}-\mathrm{x} * * 2) *(\mathrm{x} * * 2+\mathrm{y} * * 2+\mathrm{z} * * 2-1) \star(\mathrm{x}-0.5) ; \\
& \mathrm{q}:(\mathrm{z}-\mathrm{x} * * 3) *\left(\mathrm{x} * * 2+\mathrm{y} * * 2+\mathrm{z} * \mathrm{t}_{2}-1\right) \star(\mathrm{y}-0.5) ;
\end{aligned}
$$

The output of the test program ts_pretrop contains

```
The edge tropisms via giftwrapping :
    0 0 -1
    -1 -2 -3
    -1 -3 -3
    1 2 3
    0 -1 0
```

We recognize the twisted cubic $\left(t^{1}, t^{2}, t^{3}\right)$.

