Variable Precision Newton's Method to Solve Polynomial Systems

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science
http://www.math.uic.edu/~jan
jan@math.uic.edu

Graduate Computational Algebraic Geometry Seminar

Outline

Introduction

- problem statement
(2) Condition Numbers
- linear systems
- polynomial evaluation
(3) Newton's Method in Variable Precision
- relate precision to condition numbers
- implementation in progress

Variable Precision Newton's Method

(9) Introduction

- problem statement
(2) Condition Numbers
- linear systems
- polynomial evaluation

3 Newton's Method in Variable Precision

- relate precision to condition numbers
- implementation in progress

problem statement

Application of Newton's method:
Input: $\mathbf{f}(\mathbf{x})=\mathbf{0}$, a square polynomial system;
\mathbf{z}_{0}, an initial approximation for a root;
d, number of correct decimal places in the result.
Output: $\mathbf{z},\left|\mathbf{z}-\mathbf{z}^{*}\right| \leq 10^{-d}$, where $\mathbf{f}\left(\mathbf{z}^{*}\right)=\mathbf{0}$.
Problem: decide the working precision to get the desired accuracy.
Let precision the precision be variable:
(1) Double precision, $\epsilon_{\text {mach }}=2^{-53} \approx 1.110 \mathrm{e}-16$, in hardware.
(2) Double double precision, $\epsilon_{\text {mach }}=2^{-104} \approx 4.930 \mathrm{e}-32$. Cost overhead is similar to the cost of complex arithmetic.
(3) Quad double precision, $\epsilon_{\text {mach }}=2^{-209} \approx 1.215 \mathrm{e}-63$.
4. Arbitrary multiprecision is flexible, but has a high cost.

references to the literature

- D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler: Adaptive multiprecision path tracking. SIAM J. Numer. Anal., 46(2):722-746, 2008.
- J.W. Demmel: Applied Numerical Linear Algebra. SIAM, 1997.
- G.H. Golub and C.F. Van Loan: Matrix Computations. The Johns Hopkins University Press, third edition, 1996.
- N.J. Higham: Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

numerical conditioning and variable precision

Condition numbers measure how sensitive

- the output of a numerical routine is,
- to changes in the input.

For example, assume

- the machine precision equals 10^{-16}, and
- our problem has a condition number of 10^{8}, then the error on the output of a numerically stable algorithm to solve our problem can be as large as $10^{-8}=10^{8} \times 10^{-16}$.

In general, the decimal logarithm of the condition number predicts the loss of the number of accurate decimal places.
Therefore, given a number of decimal places that should be correct, we estimate the condition number and then adjust the precision.

singularities and variable precision

$$
\begin{aligned}
\text { Consider }\left(x-\frac{1}{3}\right)^{2} & =x^{2}-\frac{2}{3} x+\frac{1}{9} \\
& =x^{2}-0.6666 \ldots x+0.1111 \ldots \\
& \approx x^{2}-0.6666 x+0.1111
\end{aligned}
$$

Solving with numpy.roots ([1, -0.6666, 0.1111]) returns array ([0.3333+0.00333317j, 0.3333-0.00333317j]).
Each time we recompute $\frac{2}{3}$ and $\frac{1}{9}$ in a higher precision, the numerical conditioning of the roots worsen. In the limit, the condition number becomes ∞.
For a badly scaled regular problem, the condition number is finite.
For a singular problem, estimates for the condition number grow as we increase the working precision, as the condition number is infinite.

Variable Precision Newton's Method

(4) Introduction

- problem statement
(2) Condition Numbers
- linear systems
- polynomial evaluation
(3) Newton's Method in Variable Precision
- relate precision to condition numbers
- implementation in progress

singular values

Let $A \in \mathbb{C}^{n \times n}$, the Singular Value Decomposition (SVD) of A is

$$
A=U \Sigma V^{H}, \quad U^{H} U=I, \quad V^{H} V=I, \quad \Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)
$$

where

- U and V are unitary (orthogonal) matrices, and
- the singular values of A are sorted: $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}$.

If $\sigma_{n}>0$, then σ_{n} is the distance of A to the closest singular matrix.
Distance is measured in the 2-norm: $\|A\|_{2}=\max _{\|\mathbf{x}\|_{2}=1}\|A \mathbf{x}\|_{2}$.
The condition number of A with respect to the 2-norm:

$$
\operatorname{cond}_{2}(A)=\|A\|_{2}\left\|A^{-1}\right\|_{2}=\frac{\sigma_{1}}{\sigma_{n}} .
$$

estimating condition numbers

Computing the Σ of a Golub-Reinsch SVD takes $4 n^{3}$ operations. LU decomposition (row reduction with pivoting) costs $\frac{2}{3} n^{3}$ operations. Given $A \in \mathbb{C}^{n \times n}$, the LINPACK command lufco computes
(1) an LU decomposition: $P A=L U, P$ is a permutation matrix,
(2) then solve $U^{H} \mathbf{z}=\mathbf{d}, L^{H} \mathbf{y}=\mathbf{z}$, and $A \mathbf{x}=P^{H} \mathbf{y}$,
where the components d_{j} of \mathbf{d} are chosen in $\{-1,+1\}$ to make $\|\mathbf{y}\|_{1}$ large, at a cost of $4 n^{2}$ operations.
Despite the existence of counterexamples, the estimator "is regarded as being almost certain to produce an estimate correct to within a factor of 10 in practice." [Higham, 1996].
Naturally, if the estimate exceeds 10^{+15}, the outcome is no longer reliable when computing in double precision, ...
... the actual condition number could for example be 10^{+51}.

variable precision linear system solving

Input: $(A, \mathbf{b}) \in \mathbb{C}^{n \times n} \times \mathbb{C}^{n}$ defines a linear system $A \mathbf{x}=\mathbf{b}$, d is the number of decimal places wanted as correct.
Output: solution to $A \mathbf{x}=\mathbf{b}$, correct to d decimal places.
Solving a linear system with variable precision:
(1) Estimate the inverse κ^{-1} of the condition number with lufco. Then $L=\log _{10}\left(\kappa^{-1}\right)$ is the expected loss in accuracy.
If $|L| \geq \log _{10}\left(\left|\epsilon_{\text {mach }}\right|\right)$, then double the working precision and repeat the condition number estimation.
(2) Set the working precision $\epsilon_{\text {mach }}$ so that

$$
\log _{10}\left(\left|\epsilon_{\text {mach }}\right|\right)+L \geq d
$$

(3) Solve $A \mathbf{x}=\mathbf{b}$ in the right working precision.

experimental setup

Let L be the loss of decimal places:

$$
\Sigma=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 10^{L /(n-1)} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 10^{(n-2) L /(n-1)} & 0 \\
0 & 0 & \cdots & 0 & 10^{L}
\end{array}\right]
$$

then $A=U \Sigma V^{H}$ for two random unitary matrices U and V.
The machine precision must be such that $\log _{10}\left(\left|\epsilon_{\text {mach }}\right|\right)>|L|$. For $\mathbf{x}=(1,1, \ldots, 1)$, compute $\mathbf{b}=A \mathbf{x}$.

As test $A \mathbf{x}=\mathbf{b}$, with $\operatorname{cond}_{2}(A)=10^{L}$ and known solution.

polynomial evaluation

Let $f \in \mathbb{C}[\mathbf{x}]$, a polynomial in n variables $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$:

$$
f(\mathbf{x})=\sum_{\mathbf{a} \in A} c_{\mathbf{a}} \mathbf{x}^{\mathbf{a}}, \quad c_{\mathbf{a}} \in \mathbb{C} \backslash\{0\}, \quad \mathbf{x}^{\mathbf{a}}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}
$$

Measuring the sensitivity of evaluating the polynomial f at $\mathbf{z} \in \mathbb{C}^{n}$:

$$
\text { the condition number is } \operatorname{cond}(f, \mathbf{z})=\frac{\sum_{\mathbf{a} \in A}\left|c_{\mathbf{a}}\right|\left|\mathbf{z}^{\mathbf{a}}\right|}{|f(\mathbf{z})|} .
$$

Factors that determine the magnitude of $\operatorname{cond}(f, \mathbf{z})$:
(1) the magnitude of the coefficients $\left|c_{\mathbf{a}}\right|$,
(2) the magnitude of the coordinates of $\mathbf{z}:\left|z_{i}\right|, i=1,2, \ldots, n$,
(3) the largest degree of the monomials $a_{1}+a_{2}+\cdots+a_{n}$,
(4) the distance of \mathbf{z} to a root, $f(\mathbf{z}) \approx 0$.

experimental setup

Making a polynomial f with prescribed condition number, for evaluating f at \mathbf{z}, choose the following factors:
(1) M_{cf} is the magnitude of coefficients of $f: M_{\mathrm{cf}} \geq\left|c_{\mathrm{a}}\right|$,
(2) M_{co} is the magnitude of the coordinates of $\mathbf{z}: M_{\mathrm{co}} \geq\left|z_{i}\right|$,
(3) d is the degree of the polynomial f,
(4) δ is the distance of \mathbf{z} to a root, change $f(\mathbf{x})$ into $f(\mathbf{x})-f(\mathbf{z})+\delta$.
Then the condition number can be as large as

$$
\frac{M_{\mathrm{cf}} \times M_{\mathrm{co}}^{d}}{\delta}
$$

an expression motivating interval arithmetic

Problem: Evaluate $f(x, y)=$

$$
\left(333.75-x^{2}\right) y^{6}+x^{2}\left(11 x^{2} y^{2}-121 y^{4}-2\right)+5.5 y^{8}+x /(2 y)
$$

at $(77617,33096)$.
An example of Stefano Taschini: Interval Arithmetic: Python Implementation and Applications. In the Proceedings of the 7th Python in Science Conference (SciPy 2008).

Siegfried M. Rump: Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica 19:287-449, 2010.

Problem: when does the precision become sufficient?

condition numbers at variable precision

The expresssion in the string

$$
\begin{aligned}
& (333.75-x * * 2) * y * * 6+x * * 2 *(11 * x * * 2 * y * * 2-121 * y * * 4-2) \\
& +5.5 * y * * 8+(1 / 2) * x * y^{\wedge}-1 ;
\end{aligned}
$$

is parsed in to a Laurent polynomial (double precision format):

$$
\begin{aligned}
& -x^{\wedge} 2 * y^{\wedge} 6+5.50000000000000 \mathrm{E}+00 * \mathrm{y}^{\wedge} 8+11 * \mathrm{x}^{\wedge} 4 * \mathrm{y}^{\wedge} 2-121 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\wedge} 4 \\
& +3.33750000000000 \mathrm{E}+02 \star \mathrm{y}^{\wedge} 6-2 \star \mathrm{x}^{\wedge} 2+5.00000000000000 \mathrm{E}-01 * \mathrm{x} * \mathrm{y}^{\wedge}-1 \\
& \text { rco inverse of condition number }
\end{aligned}
$$

precision	rco	value
double precision	$6.494 \mathrm{E}-17$	$-1.02823048247338 \mathrm{E}+21$
double double precision	$5.225 \mathrm{E}-38$	$-8.27396059946821 \mathrm{E}-01$
quad double precision	$5.225 \mathrm{E}-38$	$-8.27396059946821 \mathrm{E}-01$
24 decimal places	$3.452 \mathrm{E}-25$	$5.46645820262317 \mathrm{E}+12$
30 decimal places	$1.501 \mathrm{E}-32$	$2.37695172603940 \mathrm{E}+05$
40 decimal places	$5.225 \mathrm{E}-38$	$-8.27396059946821 \mathrm{E}-01$

Variable Precision Newton's Method

(1) Introduction

- problem statement
(2) Condition Numbers
- linear systems
- polynomial evaluation
(3) Newton's Method in Variable Precision
- relate precision to condition numbers
- implementation in progress

Newton's method in variable precision

Denote by $J_{\mathfrak{f}}(\mathbf{x})$ the Jacobian matrix of the system $\mathbf{f}(\mathbf{x})=\mathbf{0}$ at \mathbf{x}. Apply Newton's method on $\mathbf{f}(\mathbf{x})=\mathbf{0}$, at $\mathbf{z}_{\boldsymbol{k}}$:

$$
J_{\mathbf{f}}\left(\mathbf{z}_{k}\right) \Delta \mathbf{z}=-\mathbf{f}\left(\mathbf{z}_{k}\right), \quad \mathbf{z}_{k+1}:=\mathbf{z}_{k}+\Delta \mathbf{z} .
$$

Estimate condition numbers:
(1) $L_{1}=\log _{10}\left(\operatorname{cond}\left(J_{\mathbf{f}}\left(\mathbf{z}_{k}\right)\right)\right.$ loss when solving linear system;
(2) $L_{2}=\log _{10}\left(\operatorname{cond}\left(\mathbf{f}, \mathbf{z}_{k}\right)\right)$, loss when evaluating system, where $\operatorname{cond}\left(\mathbf{f}, \mathbf{z}_{k}\right)=\max _{i=1}^{n} \operatorname{cond}\left(f_{i}, \mathbf{z}_{k}\right)$.
Then $L=\max \left(L_{1}, L_{2}\right)$ is the estimated loss of decimal places.

experimental setup

For testing, we want a Jacobian matrix with given condition. Making a polynomial f with prescribed gradient. Consider:

$$
f(\mathbf{x})=g(\mathbf{x})+\sum_{k=1}^{n} c_{k} x_{k}+c_{0}
$$

where g contains no linear or constant terms.
Let v_{ℓ} be the ℓ-th value of the gradient of $f: v_{\ell}=\frac{\partial f}{\partial x_{\ell}}(\mathbf{z})$.

$$
v_{\ell}=\frac{\partial f}{\partial x_{\ell}}(\mathbf{z})=\frac{\partial g}{\partial x_{\ell}}(\mathbf{z})+c_{\ell} \quad \Rightarrow \quad c_{\ell}=v_{\ell}-\frac{\partial g}{\partial x_{\ell}}(\mathbf{z})
$$

Then $v_{0}=f(\mathbf{z})=g(\mathbf{z})+\sum_{k=1}^{n} c_{k} z_{k}+c_{0} \Rightarrow c_{0}=v_{0}-g(\mathbf{z})-\sum_{k=1}^{n} c_{k} z_{k}$.

implementation in progress

Current newton_step in phcpy.solver:

$$
\begin{aligned}
\text { sols }=\text { newton_step }(p, \text { sols, } & \text { precision } \left.=\prime d^{\prime}\right) \\
& \text { precision } \left.=\prime d^{\prime}\right) \\
& \text { precision } \left.=\prime q d^{\prime}\right) \\
& \text { precision }=^{\prime} \mathrm{mp}^{\prime} \text { decimals=100) }
\end{aligned}
$$

The goal is to provide a prototype like

```
sols = newton_step(p,sols,accuracy=8)
```

