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Abstract

A polynomial homotopy is a family of polynomial systems, typically in one parameter t.
Our problem is to compute power series expansions of the coordinates of the solutions in the
parameter t, accurately, using multiple double arithmetic. One application of this problem
is the location of the nearest singular solution in a polynomial homotopy, via the theorem of
Fabry. Power series serve as input to construct Padé approximations.

Exploiting the massive parallelism of Graphics Processing Units capable of performing
several trillions floating-point operations per second, the objective is to compensate for the
cost overhead caused by arithmetic with power series in multiple double precision. The
application of Newton’s method for this problem requires the evaluation and differentiation
of polynomials, followed by solving a blocked lower triangular linear system. Experimental
results are obtained on NVIDIA GPUs, in particular the RTX 2080, P100 and V100.

Code generated by the CAMPARY software is used to obtain results in double double,
quad double, and octo double precision. The programs in this study are self contained,
available in a public github repository under the GPL-v3.0 License.

Keywords and phrases. Graphics Processing Unit (GPU), multiple double arithmetic, New-
ton’s method, numerical analytic continuation, Taylor series.

1 Introduction

Many problems in science and engineering require the solving of a system of polynomial equations
in several variables. Homotopy methods define families of polynomial systems which connect a
system that must be solved to a system with known solutions. Continuation methods track the
solution paths from the known solutions to solutions of the system that must be solved. This
paper considers the application of Newton’s method to one solution path.

With multiple double arithmetic Taylor series developments for the solution curves defined
by polynomial homotopies can be computed accurately using Newton’s method. The need for
multiprecision in analytic continuation can be traced back to [13] via the direct quote “Some

reflection shows that in order to get a convergent process the early vectors A
(k)
n (early with

respect to k) must be computed more accurately than the late ones” where the italics appear as
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in [13]. The early vectors refer to the earlier coefficients of the series. This quote appeared in
abbreviated form in the recent paper [33].

The Taylor series coefficients are input to algorithms to construct Padé approximants [5],
which are related to extrapolation methods [27] and approximation algorithms [32]. An example
of an application to electrical engineering is the holomorphic embedding load flow method to
solve power flow problems. In the convergence study of [8], results are computed with 400 digits
of precision, using [22].

In this paper, acceleration with Graphics Processing Units (GPUs) is applied to compensate
for the computational overhead caused by the multiple double arithmetic.

1.1 Problem Statement

The two main concerns are performance and convergence. For performance, the input must be
sufficiently large, but still well conditioned enough to allow for Newton’s method to converge.
The first problem is to define a setup that allows to scale so good performance can be reached
while ensuring convergence. In examining the scalability we address the first key question:
how much of the overhead can be compensated by GPU acceleration? Prior work showed
that teraflop performance was achieved in the acceleration of the convolutions to evaluate and
differentiate polynomials in several variables at power series [37] and in the acceleration of the
blocked Householder QR [38] to solve linear systems in the least squares sense in multiple double
precision. The differentiation adapts the reverse mode of algorithmic differentiation [11] with
power series arithmetic. The acceleration of the blocked Householder QR [6] is explained in [19],
and also addressed in [4] and [39]. Additional related work on multicore and accelerated QR
can be found in [3], [2], [21], [30], and [31]. The acceleration of the back substitution algorithm
applies the formulas of [12], developed further using the ideas of [26].

The second question concerns the combination of various kernels in the linearization of the
power series. Of the various different types of kernels that are launched, which types require the
most amount of time?

1.2 Multiprecision Arithmetic

A multiple double number is an unevaluated sum of nonoverlapping doubles. The renormaliza-
tion and arithmetical operations are explained in [25].

MPLAPACK [24] supports quad double arithmetic and provides implementations of arbitrary
multiprecision linear algebra operations. A recent application to matrix-matrix multiplication is
in [34]. For multiple double precision, the software libraries QDlib [14] and CAMPARY [17] are
applied, customized as follows. Instead of working with an array of double double numbers, two
arrays of doubles are used: the first array for the most significant doubles and the second one
for the least significant doubles, as this memory layout benefits memory coalescing, especially
for complex quad double and octo double numbers. The GPU version of the QDlib library [23]
uses the double2 and double4 types of the CUDA SDK, which promote good memory access
for double doubles and quad doubles, but are not longer suited for complex quad doubles or
octo doubles.

Multiple double precision is not true multiprecision in the sense that one cannot select any
number of bits for the fraction. The other drawback is the limited size of the exponents (limited
to the 11 bits of the 64-bit hardware doubles), which will prohibit the computation with in-
finitesimal values. In the context of GPU acceleration, recent work of [16] makes an interesting
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comparison with double double arithmetic: “The double double arithmetic of CAMPARY per-
forms best for the problem of matrix-vector multiplication.” Concerning quad double precision,
the authors of [16] write: “the CAMPARY library is faster than our implementation; however
as the precision increases the execution time of CAMPARY also increases significantly.” The
advantage of multiple double arithmetic is that simple counts of the number of floating-point
operations quantify the cost overhead precisely and the flops metrics for performance are directly
applicable.

The goal of applying GPU acceleration to offset the cost of multiple double precision arith-
metic is related to the recent trend of mixed precision [1], [15], [18].

1.3 Numerical Condition of Taylor Series

The convergence concern is closely related to the numerical conditioning of the problem of
power series solutions. Consider the following classical result, applied in [28] to detect nearby
singularities.

Theorem 1.1 (the ratio theorem of Fabry [9]) If for the series x(t) = c0 + c1t + c2t
2 + · · · +

cdt
d + cd+1t

d+1 + · · · , we have lim
n→∞

cd/cd+1 = z, then

• z is a singular point of the series, and

• it lies on the boundary of the circle of convergence of the series.

Then the radius of the circle of convergence is less than |z|.

In a numerical interpretation of this theorem, observe that the smaller convergence radius,
the larger the growth in the coefficients, because then |cd+1| > |cd|. For example if |z| is 1/2, then
for sufficiently large d, |cd+1| ≈ 2|cd|. Thus, for series of order 64, we could observe coefficients
of magnitude 264 ≈ 1.8×1019. Therefore, for convergence, it is best to generate examples which
have a unique power series solution and use decaying coefficients as in the series developments
of exponential functions.

In this paper Newton’s method is applied to compute Taylor series. An alternative is to
apply Fourier series methods as done in analytic continuation, see e.g. [10]. These methods
are very sensitive to a good choice of the step size for taking samples of the function to be
differentiated. As explained in [10] a smaller step size benefits the lower order coefficients while
a larger step size may be needed to compute the higher order coefficients accurately.

This paper is another next step to accelerate a new robust path tracking algorithm [28],
applying the linearization of [7] and extending the multicore implementation of [29]. As the
robust path tracker of [28] scales well to track millions of paths without error, the context of
this research effort is to scale the number of equations and variables of the systems. All code
used in the experiments is publicly available in the github repository of PHCpack [35], released
under the GNU GPL license.

The main experimental result of this research is that on systems of 1024 equations in 1024
variables, when doubling the precision from quad double to octo double, the increase in wall
clock time is much less than what can be predicted from the cost overhead factors of the multiple
double arithmetical operations as the increase in the time occupied by the kernels is significant.
As expected, with multiple double arithmetic, the arithmetic intensity of the computations
increases and the GPU becomes more fully occupied, allowing for a compensation of the cost
overhead caused by the multiple double arithmetic.
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Q,R := qr(A0)

x0 := R−1QHb0

b1 := b1 −A1x0 b2 := b2 −A2x0 b3 := b3 −A3x0

x1 := R−1QHb1

b2 := b2 −A1x1 b3 := b3 −A2x1
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JĴ

J
JĴ
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Figure 1: A task graph to solve a block Toeplitz system of four blocks as in (4). The arrows
define data and execution flow. The length of the critical path determines the maximum speedup
on a computer with 3 or more cores. With the fine granularity of instruction level parallelism of
GPUs much larger speedups are obtained once the GPU is fully occupied. The computationally
intensive qr is applied only once.

The next section contains a high level description of Newton’s method on power series, using
linearizations. The setup of the test problems with the levels of precision is justified in the
third section. As defined in the fourth section, Newton’s method is executed using a staggered
progression of the order of the power series. To predict the performance of the accelerated code,
in section five the arithmetic intensities of different kernels are computed. Section six contains
the results of the computational experiments.

2 Linearized Series and Newton’s Method

Instead of working with vectors and matrices of power series, we work with series that have as
coefficients vectors and matrices. For example, for series of order 4, we solve A(t)x(t) = b(t),
with n-by-n matrices A0, A1, A2, A3:

A(t) = A0 +A1t+A2t
2 +A3t

3, (1)

x(t) = x0 + x1t+ x2t
2 + x3t

3, (2)

b(t) = b0 + b1t+ b2t
2 + b3t

3. (3)

The linearization of A(t)x(t) = b(t) leads to
A0

A1 A0

A2 A1 A0

A3 A2 A1 A0




x0

x1

x2

x3

 =


b0

b1

b2

b3

 . (4)

The task graph in Figure 1 defines a coarse grained parallel algorithm for A(t)x(t) = b(t).
Even as least squares solutions provide an accuracy close to machine precision, in the forward

substitution of the solution of the lower triangular block Toeplitz system in (4) the errors in the
coefficient vectors xk of x(t) propagate through the updates of the right hand side vectors bk,
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see Figure 1 for the update formulas. If we lose two decimal places of accuracy in each step, then
for series of order four up to eight decimal places may be lost in the last coefficient vector x3.
A more extensive error analysis was made in [29].

Newton’s method takes on input a system of polynomials in several variables, with power
series truncated to the same degree and produces a sequence of power series. As an operator,
this version of Newton’s method can be considered as turning a problem in many variables
where all variables are interdependent into a sequence of power series for each separate variable,
thus removing the interdependencies among the variables. A high level description of Newton’s
method is shown in the pseudo code below.

Input: f(x(t)), system with power series coefficients;
x0 = x(t), initial leading coefficients;
N , the maximum number of iterations;
ε, the tolerance on the accuracy.

Output: i, the number of iterations;
x(t), if i ≤ N , then ‖f(x(t))‖ < ε.

x(0) := x0

for i from 1 to N do
A(t),x(t) := ∂(f(x(t)))
exit when ‖b(t)‖ < ε
∆x(t) := A(t)\b(t)
report ‖b(t)−A(t)∆x(t)‖
x(t) := x(t) + ∆x(t)
b(t) := b(t)−A(t)x(t) as in Figure 1
exit when ‖∆x(t)‖ < ε

The two computationally intensive operations are the evaluation and differentiation ∂ and
the linear system solving \. The residual computation ‖b(t)−A(t)∆x(t)‖ is for monitoring the
convergence of the method and can be omitted.

The high level description does not incorporate the staggered nature of the updates. As will
be explained in section 4 below not all coefficient vectors of the series are involved in all stages.

3 Columns of Monomials

We start by considering polynomial systems of the form xE = b(t), where E is an exponent
matrix which contains in its rows the exponent vectors of the variables x. The right hand side
b(t) is a vector of power series. For example, n = 3, x = [x1, x2, x3]:

E =

 1 0 0
1 1 0
1 1 1

 
x1 = b1(t)
x1x2 = b2(t)
x1x2x3 = b3(t)

(5)

with solutions
x1(t) = exp(α1t) +O(td)
x2(t) = exp(α2t) +O(td)
x3(t) = exp(α3t) +O(td)

(6)

where

exp(αt) +O(t4) = 1 + αt+
α2

2!
t2 +

α3

3!
t3 +O(t4), (7)

5



with α ∈ [−1,−1+δ]∪ [1−δ, 1], δ > 0, or |α| = 1 for random α ∈ C. The α introduces numerical
variation in the coefficients of the solutions.

The choice of exponential series as solution series avoids that the series in the right hand
side vector of the system become large. Considering the series expansion

exp(t) =
d−1∑
k=0

tk

k!
+O(td) (8)

leads in Table 1 to a justification for multiprecision, based on the size of the last coefficient in
the truncated series. The levels of precision proceeds in powers of two according to the expected
quadratic convergence of Newton’s method.

k 1/k! recommended precision eps

7 2.0e-004 double precision okay 2.2e-16

15 7.7e-013 use double doubles 4.9e-32

23 3.9e-023 use double doubles
31 1.2e-034 use quad doubles 6.1e-64

47 3.9e-060 use octo doubles 4.6e-128

63 5.0e-088 use octo doubles

95 9.7e-149 need hexa doubles 5.3d-256

127 3.3e-214 need hexa doubles

Table 1: Recommended precision levels based on the order of the series, where eps is the smallest
positive double that makes a difference when added to 1.0.

The need hexa doubles in Table 1 is because accelerating the least squares solving, evaluation
and differentiation at power series with hexa double arithmetic is still a work in progress. The
computations in this paper are therefore limited to series of order 64. While computations of
larger orders are possible, the accuracy in octo double precision is no longer guaranteed.

While one column of monomials is sufficient for convergence and scalability investigations,
consider the 2-column format of monomials

c1x
E1 + c2x

E2 = b(t), (9)

for two n-vectors c1 and c2 and two exponent matrices E1 and E2. With the introduction of
new variables, any polynomial system can be written in this 2-column format.

For the experiments with two columns of monomials, specific lower and upper triangular
matrices of ones are used. For example, for n = 3:

E1 =

 1 0 0
1 1 0
1 1 1

 and E2 =

 1 1 1
1 1 0
1 0 0

 . (10)

Although the product of the degrees of the system c1x
E1 + c2x

E2 = b(t) is now much larger
than the systems defined by xE1 = b(t) and xE2 = b(t), there is still only one solution, which
allows for decaying coefficients in the power series and thus for coefficients of modest growth,
benefiting the numerical conditioning of the problem.
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That c1x
E1 + c2x

E2 = b(t), for lower and upper triangular matrices E1 and E2 as in (10),
has only one solution can be seen by considering the k-th and the (n− k)-th equations:

k : c1,k xe1,k + c2,k xe2,k = bk(t)

n− k : c1,n−kx
e1,n−k + c2,n−kx

e2,n−k = bn−k(t).

As e1,k = e2,n−k and e2,k = e1,n−k, the two equations can be diagonalized into

γ1,kx
e1,k = βk(t)

γ1,n−kx
e1,n−k = βn−k(t),

so for those two particular choices of E1 and E2 the system is equivalent to the one-column
system xE = b(t) which has a unique solution series.

While c1x
E1 + c2x

E2 = b(t) has thus the same good numerical conditioning as xE = b(t),
it serves as a good test on the increased cost of evaluation and differentiation. For problems
with many nearby singularities, it is recommended to work with a factor δ ∈ (0, 1) to multiply
the parameter t with to dampen the growth of the coefficients in the series, according to the
numerical interpretation of Theorem 1.1.

4 Staggered Computations

In computing x(t) = x0 + x1t + x2t
2 + · · · + xd−1t

d−1, not all d coefficient vectors need to be
involved.

We start x0 with half its precision correct, otherwise Newton’s method may not converge.
The first iteration consists in getting x0 correct to the full working precision. If Newton’s method
would not converge for order zero, then there is no use of increasing the order.

The d in the order O(td) is increased gradually, for example, the update formula for the
order

d := d+ 1 + d/2 (11)

is optimistically hoping for quadratic convergence.
Once xk is correct, the corresponding bk = 0, as bk is obtained by evaluation, and then the

update ∆xk should no longer be computed because

QR∆xk = bk = 0 ⇒ ∆xk = 0. (12)

This gives a criterion to stop the iterations.

5 Accelerating Newton’s Method

While the blocked Householder QR is very suitable to GPU acceleration and teraflop perfor-
mance is achieved already at relatively modest dimensions, it stars only at the very beginning
of Newton’s method as it is no longer needed once the QR decomposition is computed. The
second part of the least squares solver, the back substitution, is needed in every stage, as are
the convolutions to compute the right hand sides of the linear systems.

In [20], the Compute to Global Memory Access (CGMA) ratio is defined as the number of
floating-point calculations performed by a kernel for each access to the global memory. This
CGMA ratio corresponds to the more general notion of arithmetic intensity of a computation [40].
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5.1 Arithmetic Intensity of Convolutions

In the computation of the arithmetic intensity of convolutions, or equivalently, the number of
floating-point computations per double, it suffices to consider one monomial. For example, take
n = 4 and let f = x1x2x3x4 be the monomial we evaluate and differentiate. Using the reverse
mode of algorithmic differentiation, the computations are organized as follows:

x1 ? x2 x4 ? x3 x1x2
x1x2 ? x3 x4x3 ? x2 x4x3 ? x1
xxx2x3 ? x4

(13)

where each ? indicates a new multiplication. In the three columns we count respectively n−1 = 3,
n − 2 = 2, n − 2 = 2, for a total of 3n − 5 multiplications, for n inputs. If the inputs were
doubles, then the arithmetic intensity would be

3n− 5

n
. (14)

Each input is a power series of order d. To avoid thread divergence, the coefficients of the
second series in each product are padded with zeros. For example, for d = 3:

(a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2)
= (a0 ? b0 + a1 ? b−1 + a2 ? b−2)
+ (a0 ? b1 + a1 ? b0 + a2 ? b−1)t
+ (a0 ? b2 + a1 ? b1 + a2 ? b0 )t2,

(15)

where coefficients with negative indices are zero. Ignoring the additions, we count d2 multipli-
cations, so we now have (3n− 5)d2 multiplications for nd inputs. If the coefficients of the power
series were doubles, then the arithmetic intensity would be

(3n− 5)d2

nd
. (16)

The coefficients of the power series are multiple doubles. For double double, quad double, and
octo double, the number of doubles in the inputs are respectively 2nd, 4nd, and 8nd. Working
with complex coefficients doubles the size of the input. Doubling the precision doubles the size
of the input, but increase the arithmetical cost significantly, as illustrated by Table 5.1 (with
data from [36]).

+ − ∗ total

double double 5 9 9 23
quad double 99 164 73 336
octo double 529 954 259 1742

Table 2: Arithmetical Cost of Multiple Double Multiplications, e.g.: multiplying two double
doubles takes 5 additions of two doubles, 9 subtractions and 9 multiplications, for a total of 23
floating-point operations.

Then the number of floating-point operations per double for the evaluation and differentiation
of a product of n power series of order d are respectively for double doubles, quad doubles, and
octo doubles:

23(3n− 5)d2

2nd
,

336(3n− 5)d2

4nd
,

1742(3n− 5)d2

8nd
, (17)
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where the corresponding multiplication factors 23/2, 336/4, and 1742/8 evaluate respectively to
11.5, 84, and 217.75.

With each doubling of the precision, the arithmetic intensity increases by a factor of 11.5
(from double to double double), by a factor of 7.30 ≈ 84/11.5 (from double double to quad
double), and by a factor of 2.59 ≈ 217.75/84 (from quad double to octo double). As the
evaluation and differentiation is needed at every stage of Newton’s method, the high numbers of
floating-point operations per double are promising indicators for the success of GPU acceleration.

5.2 Accelerated Least Squares

With the QR decomposition of a matrix A, solving Ax = b in the least squares sense is reduced
to Rx = QHb, which involves the multiplication of QH with b, followed by a back substitution.

Assuming the leading coefficient vector x0 of the series has an accuracy of at least half
the working precision, the QR decomposition happens only once in the first stage of Newton’s
method, at a cost of O(n3). While every stage involves the solution of Rx = QHb, the cost
of computing QHb and the back substitution is both O(n2). Even if the acceleration of the
QR decomposition works better than the acceleration of Rx = QHb, the factor n in the cost
overhead of QR over Rx = QHb makes that the proportion of the QR decomposition will still
dominate all QHb computations and all back substitutions, as n equals 1024 and the number of
stages is capped to 24.

5.3 Accelerated Updates and Residuals

The updates of the right hand side vectors (see the right of Figure 1) involve many different
matrices. For example, the updates to b3 happen as b3 := b3 − A3x0, b3 := b3 − A2x1,
b3 := b3 − A1x2, each time with different matrices A3, A2, and A1 which cannot remain all in
the main memory of the device. Even as the cost of these computations is O(n2) we may expect
the updates to occupy a significant portion of the total execution times.

The same arguments apply to the computation of the residuals, when measuring the accuracy
of the computed updates ∆x. However, one could significantly reduce the cost by selecting only
one or a few random equations instead of computing the residuals for all equations.

For comparison with the arithmetic intensities of the convolutions, consider the matrix-
vector product, for an n-by-n matrix. Executed on doubles, n2 multiplications are performed
on (n+ 1)n doubles. The ratio n2/(n2 +n) improves on power series of order d, as convolutions
with padding take d2 multiplications, while the size of the data is multiplied by d. Restricting
to multiplications, the arithmetic intensity then is

n2d2

(n+ 1)nd
≈ d. (18)

Compared to the arithmetic intensity of convolutions, the leading terms of the numerator of (16)
divided by the denominator evaluates to 3d. So the arithmetic intensity of convolutions is three
times more than that of matrix-vector products.

6 Computational Results

The computational experiments attempt to answer the following three questions. Classifying
the types of kernels into three categories: convolutions, least squares, updates and residuals,
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NVIDIA GPU CUDA #MP #cores/MP #cores GHz

Pascal P100 6.0 56 64 3584 1.33
Volta V100 7.0 80 64 5120 1.91

GeForce RTX 2080 7.5 46 64 2944 1.10

NVIDIA GPU host CPU RAM GHz

Pascal P100 Intel E5-2699 256 GB 2.20
Volta V100 Intel W2123 32 GB 3.60

GeForce RTX 2080 Intel i9-9880H 32 GB 2.30

Table 3: Specifications of the GPUs.

which type of kernel occupies the largest portion of the overall execution time? For which order
of the series do we reach teraflop performance? What happens to the wall clock time when the
precision is doubled?

6.1 Graphics Processing Units

The code was developed for the “Volta” V100 NVIDIA GPU, and tested on the “Pascal” P100
and RTX 2080 NVIDIA GPUs. Table 3 lists the main characteristics of the GPUs.

The double precision peak performance of the P100 is 4.7 TFLOPS. At 7.9 TFLOPS, the
V100 is 1.68 times faster than the P100. To evaluate the algorithms, compare the ratios of the
wall clock times on the P100 over V100 with the factor 1.68. For every kernel, the number
of arithmetical operations is accumulated. The total number of double precision operations is
computed using the cost overhead multipliers.

6.2 Proportions of Kernel Times

We distinguish six different types of kernels: (1) convolutions for evaluation and differentiation;
(2) Householder QR; (3) QHb computations; (4) back substitutions to solve Rx = QHb; (5)
updates b := b−Ax; and (6) residual computations ‖b−Ax‖1. Visualizing the data in Table 4,
Figure 2 shows the percentages of the kernels on one column of monomials defined by a triangular
exponent matrix of dimension 1024 to compute series of order 64 in octo double precision, done
on the V100.

kernel one column two columns

convolution 121.386 244.535
Householder QR 24.451 24.123

kernel for QTb 5.849 6.139
back substitution 17.053 17.884

updates 111.474 124.080
residuals 125.122 137.963

total time 405.334 554.723
wall clock time 1129.794 1808.480

Table 4: Times in seconds for each kernel on V100, on one column and two columns of monomials
in octo double precision.
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Figure 2: Percentage of each type of accelerated computation for a one column monomial system
in octo double precision, on V100.

Figure 3: Percentage of each type of accelerated computation for a two column monomial system
in octo double precision, on V100.

The largest portion of the time goes to the residual computations, for all equations in the
system. The residuals are important to measure the convergence and must be computed in
multiple double precision. One optimization could be to select at random one or a couple of
equations and compute the residuals for those selected equations instead of for all equations.
Figure 3 shows that for a 2-column monomial system, the time spent on convolutions dominates.

6.3 Performance of Convolutions

Figure 2 shows that the convolutions occupy a substantial part of the computations. For what
orders of the series do we observe teraflop performance? Consider Table 5.

On one column of monomials, triangular exponent matrix of ones, n = 1024, performance of
the evaluation and differentiation, in octo double precision, for increasing orders of the series,
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order P100 V100

1 8.041 28.997
2 16.191 59.820
3 23.748 90.003
5 29.277 149.894
8 62.747 240.760
12 94.035 360.816
18 140.918 540.572
27 211.261 810.645
41 351.994 1045.032
62 535.136 1569.347
64 554.654 1658.382

Table 5: Performance in gigaflops of convolution on P100 and V100 to evaluate and differentiate
one column of 1024 monomials in octo double precision.

visualizing the data in Table 5, Figure 4 shows that teraflop performance is observed after order
40 on the V100. But on the P100 only half a teraflop is reached at order 64.

Figure 4: Performance in gigaflops on the P100 (top) and on the V100 (bottom) to evaluate and
differentiation at series in octo double precision versus the order of the series.

In the current implementation, in the convolution of two power series each thread is respon-
sible for one coefficient of the result. Threads are launched in blocks of the size that match the
number of coefficients. An implementation better suited for series of lower order would employ a
finer granularity and have several threads collaborate to compute one coefficient of a convolution
of two series.
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6.4 Doubling the Precisions

To investigate how much of the cost overhead can be compensated by the acceleration consider
the wall clock times and the elapsed times spend by all kernels when the precision is doubled.

D 2D 4D 8D

P100 kernel times 10.4 44.5 204.4 1263.3
wall clock 418.5 695.3 969.9 3073.6

V100 kernel times 6.2 22.6 146.4 405.3
wall clock 277.9 475.3 834.7 1129.8

Table 6: Wall clock times in seconds for double (D), double double (2D), quad double (4D), and
octo double (8D) for one column of 1024 monomials to compute series of order 64 on P100 and
V100.

Visualizing Table 6, Figure 5 shows the 2-logarithms of the times of 24 steps with Newton’s
method on one column of monomials defined by a triangular exponent matrix of ones of di-
mension 1024, on the V100. Doubling the precision less than doubles the wall clock time and
increases the time spent by all kernels.

Figure 5: In doubling the precision, the wall clock times on P100 (top) and V100 (bottom) less
than doubles as the proportion of the elapsed times spent by all kernels increases.

6.5 Experiments on the RTX 2080

The last experiments concern the RTX 2080, on 16 steps with Newton’s method on one column
of monomials defined by a triangular exponent matrix of ones of dimension 512. The results are
summarized in Figure 6, visualizing the data in Table 7.
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D 2D 4D 8D

Kernel times 1.4 16.6 122.4 380.1
wall clock 35.7 80.0 225.0 474.8

Table 7: Wall clock times in seconds for double (D), double double (2D), quad double (4D), and
octo double (8D) for one column of 1024 monomials to compute series of order 64 on RTX 2080.

Figure 6: Doubling the precision on the RTX 2080.

Although several optimizations in the code will improve the performance, this first imple-
mentation offers a promising first step towards a scalable nonlinear solver based on results from
numerical analytic continuation.

7 Conclusions

Using decaying coefficients of power series expansions, octo double precision suffices for series
of order 64. Teraflop performance of the evaluation and differentiation is already attained at
order 40 on the V100. The convolutions to evaluate and differentiate at power series remain a
significant portion of all computational work. For two columns of monomials which can encode
general polynomial systems, the computational effort to evaluate and differentiate dominates all
other kernels.

Doubling precisions less than doubles the wall clock times because the computations are then
compute bound and thus well suited for acceleration by graphics processing units. Extending
the acceleration beyond octo double precision on GPUs more recent than the V100 is a future
direction.
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