Defining Functions

CTTI

November 29, 2012

Why we have to check that a function is 'well-defined'?
Do each of the following define a function with the domain given.

1. Let $\sqrt{ }^{n}$ have domain \Re. $\sqrt{ }^{n}(x)$ is the nth root of x.
\mathbb{Q} denotes the set of equivalence classes under the equivalence relation on $\left\{\frac{m}{n}: m, n \in \mathbb{Z}, n \neq 0\right\}$ defined by 'reducible'.
2. Let sum have domain $\mathbb{Q}($ more precisely $\mathbb{Q} \times \mathbb{Q})$. $\operatorname{sum}\left(\frac{a}{b}, \frac{c}{d}\right)$ is defined to be $\frac{a d+b c}{c d}$.
3. Let size have domain \mathbb{Q}. size (x) is the sum of the numerator and denominator of X.
