Defining Functions

CTTI

November 29, 2012

Why we have to check that a function is 'well-defined'? Do each of the following define a function with the domain given.

1. Let \sqrt{n} have domain \Re . $\sqrt{n}(x)$ is the nth root of x.

 \mathbb{Q} denotes the set of equivalence classes under the equivalence relation on $\{\frac{m}{n} : m, n \in \mathbb{Z}, n \neq 0\}$ defined by 'reducible'.

2. Let sum have domain \mathbb{Q} (more precisely $\mathbb{Q} \times \mathbb{Q}$). $\operatorname{sum}(\frac{a}{b}, \frac{c}{d})$ is defined to be $\frac{ad+bc}{cd}$.

3. Let size have domain \mathbb{Q} . size(x) is the sum of the numerator and denominator of X.