Geometry, the Common Core, and Proof

John T. Baldwin, Andreas Mueller

December 14, 2012

Outline

Geometry, the

Common Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to Numbers

Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

1 Overview
2 From Geometry to Numbers
3 Proving the field axioms
4 Interlude on Circles
5 An Area function
6 Side-splitter
7 Pythagorean Theorem
8 Irrational Numbers

Agenda

1 G-SRT4 - Context. Proving theorems about similarity
2 Proving that there is a field
3 Areas of parallelograms and triangles
4 lunch/Discussion: Is it rational to fixate on the irrational?
5 Pythagoras, similarity and area
6 reprise irrational numbers and Golden ratio
7 resolving the worries about irrationals

Logistics

Geometry, theCommonCore, andProofJohn T. Baldwin,
Andreas Mueller
Overview
From
Geometry to Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Common Core

John T.
Baldwin,
Andreas
Mueller

G-SRT: Prove theorems involving similarity

4. Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.

This is a particularly hard standard to understand. What are we supposed to assume when we give these proofs. Should the result be proved when the ratio of the side length is irrational?

Activity: Dividing a line into n-parts: Diagram

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Side-splitter Theorem

Theorem

Euclid VI. 2 CCSS G-SRT. 4 If a line is drawn parallel to the base of triangle the corresponding sides of the two resulting triangles are proportional and conversely.

CME geometry calls this the 'side-splitter theorem' on pages 313 and 315 of CME geometry.
Two steps:
1 Understand the area of triangle geometrically.
2 Transfer this to the formula $A=\frac{b h}{2}$.
The proof uses elementary algebra and numbers; it is formulated in a very different way from Euclid. To prove the side-splitter theorem, we have to introduce numbers.

Towards proving Side-splitter Theorem

CME geometry calls this the 'side-splitter theorem' on pages 313 and 315 of CME geometry.
Two steps:
1 Understand the area of triangle geometrically.
2 Transfer this to the formula $A=\frac{b h}{2}$.
The proof uses elementary algebra and numbers; it is formulated in a very different way from Euclid. To prove the side-splitter theorem, we have to introduce numbers.
But we won't do it via limits.

Summary -transition

We were able to prove division of lines into n-equal segments using congruence and parallelism.
We could apply the side-splitter theorem.
But we haven't proved the full-strength of side-splitter and we don't need it for division into equal segments.

Section 1: From Geometry to Numbers

From geometry to numbers

We want to define the addition and multiplication of numbers.
We make three separate steps.
1 identify the collection of all congruent line segments as having a common 'length'. Choose a representative segment $O A$ for this class.
2 define the operation on such representatives.
3 Identify the length of the segment with the end point A. Now the multiplication is on points. And we define the addition and multiplication a little differently.
We focus on step 2; it remains to show the multiplication and addition satisfy the axioms.

Properties of segment addition

Adding line segments

The sum of the line segments $A B$ and $A C$ is the segment $A D$ obtained by extending $A B$ to a straight line and then choose D on $A B$ extended (on the other side of B from A) so that $B D \cong A C$.

Is segment addition associative?
Does it have an additive identity?
Does it have additive inverses?

Properties of segment addition

Adding line segments

The sum of the line segments $A B$ and $A C$ is the segment $A D$ obtained by extending $A B$ to a straight line and then choose D on $A B$ extended (on the other side of B from A) so that $B D \cong A C$.

Is segment addition associative?
Does it have an additive identity?
Does it have additive inverses?

Defining Multiplication

Consider two segment classes a and b. To define their product, define a right triangle ${ }^{1}$ with legs of length a and b. Denote the angle between the hypoteneuse and the side of length a by α. Now construct another right triangle with base of length b with the angle between the hypoteneuse and the side of length b congruent to α. The length of the vertical leg of the triangle is $a b$.
${ }^{1}$ The right triangle is just for simplicity; we really just need to make the

Defining segment Multiplication diagram

Geometry, the

Common Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview

From
Geometry to Numbers

Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Is multiplication just repeated addition?

Activity

We now have two ways in which we can think of the product $3 a$.
What are they?

Is multiplication just repeated addition?

Activity

We now have two ways in which we can think of the product 3 3.
What are they?
On the one hand, we can think of laying 3 segments of length a end to end.
On the other, we can perform the segment multiplication of a segment of length 3 (i.e. 3 segments of length 1 laid end to end) by the segment of length a.

Prove these are the same.
Discuss: Is multiplication just repeated addition?

Section 2: Proving the field Axioms

What are the axioms for fields?

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

What are the axioms for fields?

Geometry, the
Common
Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean Theorem

Irrational Numbers

Addition and multiplication are associative and commutative. There are additive and multiplicative units and inverses. Multiplication distributes over addition.

Circles in the common core

Common Core Standards G-C2, G-C3

2. Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Central and Inscribed Angles

Geometry, the
Common
Core, and Proof

John T
Baldwin,
Andreas
Mueller

Overview

From
Geometry to Numbers

Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean

Theorem

Irrational Numbers

Theorem

[Euclid III.20] CCSS G-C. 2 If a central angle and an inscribed angle cut off the same arc, the inscribed angle is congruent to half the central angle.

Prove this theorem.

Diagram for proof

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Diagram for proof

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Another Diagram for proof

Geometry, theCommonCore, and Proof
John T. Baldwin,
Andreas Mueller

Overview

From

Geometry to Numbers
Proving the field axioms
Interlude on Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Cyclic Quadrilateral Theorem

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller

Overview

CCSS G-C. 3

Theorem

Let $A B C D$ be a quadrilateral. The vertices of $A B C D$ lie on a circle (the ordering of the name of the quadrilateral implies A and B are on the same side of $C D$) if and only if $\angle D A C \cong \angle D B C$.

Multiplication

Geometry, the

Common Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean Theorem

Irrational Numbers

The multiplication defined on points satisfies.
1 For any $a, a \cdot 1=1$
2 For any a, b

$$
a b=b a .
$$

3 For any a, b, c

$$
(a b) c=a(b c)
$$

4 For any a there is a b with $a b=1$.

Proving these properties

Geometry, theCore, andProof
John T.Baldwin,AndreasMueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude onCircles
An Areafunction
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Commutativity of Multiplication

Given a, b, first make a right triangle $\triangle A B C$ with legs 1 for $A B$ and a for $B C$. Let α denote $\angle B A C$. Extend $B C$ to D so that $B D$ has length b. Construct $D E$ so that $\angle B D E \cong \angle B A C$ and E lies on $A B$ extended on the other side of B from A. The segment $B E$ has length $a b$ by the definition of multiplication.

Commutativity of Multiplication: finishing the proof

Since $\angle C A B \cong \angle E D B$ by the cyclic quadrilateral theorem, $A C E D$ lie on a circle. Now apply the other direction of the yclic quadrilateral theorem to conclude $\angle D A E \cong \angle D C A$ (as they both cut off arc $A D$. Now consider the multiplication beginning with triangle $\triangle D A E$ with one leg of length 1 and the other of length b. Then since $\angle D A E \cong \angle D C A$ and one leg opposite $\angle D C A$ has length a, the length of $B E$ is $b a$. Thus, $a b=b a$.

Equal Content

Geometry, the
Common Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to Numbers

Proving the
field axioms
Interlude on Circles

An Area function

Side-splitter
Pythagorean Theorem

Irrational Numbers

Definition

[Equal content] Two figures P, Q have equal content if there are figures $P_{1}^{\prime} \ldots P_{n}^{\prime}, Q_{1}^{\prime} \ldots Q_{n}^{\prime}$ such that none of the figures overlap, each P_{i}^{\prime} and Q_{i}^{\prime} are scissors congruent and $P \cup P_{1}^{\prime} \ldots \cup P_{n}^{\prime}$ is scissors congruent with $Q \cup Q_{1}^{\prime} \ldots \cup Q_{n}^{\prime}$.

Equal Content for parallelogram

Geometry, the
Common
Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean Theorem
|rrational Numbers

We showed.

Euclid I.35, I.38]

Parallelograms on the same base and in the same parallels have the same area. (actually content)
Triangles on the same base and in the same parallels have the same area.

I-35.jpg

Properties of Area

Area Axioms

John T.
Baldwin,
Andreas
Mueller
The following properties of area are used in Euclid I. 35 and I.38. We take them from pages 198-199 of CME geometry.

1 Congruent figures have the same area.
2 The area of two 'disjoint' polygons (i.e. meet only in a point or along an edge) is the sum of the two areas of the polygons.
3 Two figures that have equal content have the same area.
4 If one figure is properly contained in another then the area of the difference (which is also a figure) is positive.

Equal area

Geometry, the

 Common Core, and ProofJohn T
Baldwin,
Andreas Mueller

Overview
From
Geometry to Numbers

Proving the

field axioms

Interlude on
Circles
An Area function

Side-splitter
Pythagorean Theorem

Irrational Numbers

What are these axioms about? Is there a measure of area?

Equal area

Geometry, the
CommonCore, and Proof

What are these axioms about? Is there a measure of area? Area function to come.

Equal Content as equal area

Geometry, the
Common Core, and Proof

John T
Baldwin,
Andreas
Mueller

Overview

From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area function

Side-splitter
Pythagorean Theorem

Irrational Numbers

Clearly equal content satisfies the first 3 conditions for equal area.
It doesn't satisfy the last unless we know there are no figures of zero area.

A crucial lemma Activity

```
Geometry, the
    Common
    Core, and
        Proof
        John T.
    Baldwin,
    Andreas
    Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers
```

Do the activity- a crucial lemma - Massaging the picture.

A crucial lemma

Lemma

If two rectangles $A B G E$ and $W X Y Z$ have equal content there is a rectangle ACID, with the same content as WXYZ and satisfying the following diagram. Further the diagonals of AF and FH are collinear.

Proof. Suppose $A B$ is less than $W X$ and $Y Z$ is less than $A E$. Then make a congruent copy of $W X Y Z$ as ACID below. Let F be the intersection of $B G$ and $D I$. Construct H as the intersection of $E G$ extended and $I C$ extended. Now we prove F lies on $A H$.

Crucial Lemma: diagram

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Crucial Lemma: proof continued

Suppose F does not lie on $A H$. Subtract $A B F D$ from both rectangles, then DFGE and BCIF have the same area. $A F$ and $F H$ bisect $A B F D$ and $F I H G$ respectively.
So $A F D \cup D F G E \cup F H G$ has the same content as $A B F \cup B C I F \cup F I H$, both being half of rectangle ACHE (Note that the union of the six figures is all of $A C H E$.

Here, AEHF is properly contained in AHE and ACHF properly contains $A C H$. This contradicts the 4th area axiom; hence F lies on $A H$.

Crucial Lemma 2

```
Geometry, the
    Common
    Core, and
        Proof
        John T.
        Baldwin,
        Andreas
        Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers
```


Claim

If $A B G E$ and $A C I D$ are as in the diagram (in particular, have the same area), then in segment multiplication $(A B)(B G)=(A C)(C I)$.

Prove this.

Crucial Lemma 2

Claim

If $A B G E$ and $A C I D$ are as in the diagram (in particular, have the same area), then in segment multiplication $(A B)(B G)=(A C)(C I)$.

Prove this.
Proof. Let the lengths of $A B, B F, A C, C H, J K$ be represented by a, b, c, d, t respectively and let $A J$ be 1 . Now $t a=b$ and $t c=d$, which leads to $b / a=d / c$ or $a c=b d$, i.e. $(A B)(B G)=(A C)(C I)$.

Diagram for Claim

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

By congruence, we have $(A E)(A B)=(W Z)(X Y)$ as required.

The area function

Definition

The area of a square 1 unit on a side is (segment arithmetic) product of its base times its height, that is one square unit.

Theorem

The area of a rectangle is the (segment arithmetic) product of its base times its height.

Proof. Note that for rectangles that have integer lengths this follow from Activity on multiplication as repeated addition. For an arbitrary rectangle with side length c and d, apply the identity law for multiplication and associativity.

What is there still to prove?

Geometry, theCommonCore, andProof
John T
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Towards the area formula for triangles

Exercise

Draw a scalene triangle such that only one of the three altitudes lies within the triangle. Compute the area for each choice of the base as b (and the corresponding altitude as h).

Towards the area formula for triangles

Theorem

Any of the three choices of base for a triangle give the same value for the product of the base and the height.

Towards the area formula for triangles

Theorem

Any of the three choices of base for a triangle give the same value for the product of the base and the height.

Proof. Consider the triangle $A B C$ is figure 1 . The rectangles in figures 1,3 , and 5 are easily seen to be scissors congruent. By the Claim, each product of height and base for the three triangles is the same. That is, $(A B)(C D)=(A C)(B J)=(B C)(A M)$. But these are the three choices of base/altitude pair for the triangle $A B C$.

Diagram for the area formula for triangles

Geometry, the
Common Core, and Proof

John T.
Baldwin,
Andreas Mueller

Overview

From
Geometry to Numbers

Proving the field axioms

Interlude on Circles

An Area function

Side-splitter
Pythagorean Theorem

Irrational Numbers

Figure 1

Figure 4

Figure 2

Figure 5

Geometry, the Common Core, and Proof

John T.
Baldwin,
Andreas Mueller

Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Section 5: The side-splitter theorem

Basic Tool

Geometry, the
Common Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean Theorem

Irrational Numbers

We have shown.

Assumption

The area of a triangle with base b and height h is given by $\frac{1}{2} b h$ using segment multiplication.

Proving the Sidesplitter

Resolving Raimi's worry

Using the formula $A=\frac{1}{2} b h$ we have shown.

Theorem

Euclid VI. 2 CCSS G-SRT. 4 If a line is drawn parallel to the base of triangle the corresponding sides of the two resulting triangles are proportional and conversely.

The theorem holds for all lengths of sides of a triangle that are in the plane.

Interlude on Circles

An Area
function
Side-splitter
Pythagorean
Theorem

Resolving Raimi's worry

Using the formula $A=\frac{1}{2} b h$ we have shown.

Theorem

Euclid VI. 2 CCSS G-SRT. 4 If a line is drawn parallel to the base of triangle the corresponding sides of the two resulting triangles are proportional and conversely.

The theorem holds for all lengths of sides of a triangle that are in the plane.

But there may be lengths (e.g. π) which aren't there. (E.g. if the underlying field is the real algebraic numbers).
So CCSM was right to have both segment length and arc length as primitive terms.

Resolving Raimi's worry

Theorem

If two triangles have the same height, the ratio of their areas equals the ratio of the length of their corresponding bases.

The theorem holds for all lengths of sides of triangle that are in the plane.

Resolving Raimi's worry

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to Numbers

Proving the field axioms

Interlude on Circles

An Area
function
Side-splitter

Theorem

If two triangles have the same height, the ratio of their areas equals the ratio of the length of their corresponding bases.

The theorem holds for all lengths of sides of triangle that are in the plane.

But there may be lengths (π) which aren't there. (E.g. if the underlying field is the real algebraic numbers).
So CCSM was right to have both segment length and arc length as primitive terms.
Geometry, the Common Core, and Proof
John T
Baldwin,
Andreas Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
|rrationa|
Numbers

Section 6 The Pythagorean Theorem

Pythagorean Theorem

Consider various proofs:
1 Look at the Garfield paper. (Draw the diagram that got blacked out by 137 years.)
2 Prove using similar triangles. (Hint: draw a perpendicular from the hypoteneuse to the opposite vertex; follow your nose. http://aleph0.clarku.edu/~djoyce/java/ elements/bookVI/propVI31.html
3 The standard Euclid proof http://aleph0.clarku.edu/ ~djoyce/java/elements/bookI/propI47.html
4 your favorite
598 proofs
http://cut-the-knot.org/pythagoras/\#pappa
Which (proofs) are in your textbook?
Note that each proof uses either area or similarity.
Section 7 Irrational Numbers

Geometry, the
Common Core, and Proof

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

CCSSM on irrationals I

John T.
Baldwin,
Andreas
Mueller

Overview
From
Geometry to Numbers

Proving the field axioms

Interlude on Circles

An Area function

The Number System 8.NS Know that there are numbers that are not rational, and approximate them by rational numbers.

The Number System 8.NS Know that there are numbers that are not rational, and approximate them by rational numbers. 1. Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number.

CCSSM on irrationals II

Expressions and Equations 8.EE Work with radicals and

 integer exponents. 1. Know and apply the properties of integer exponentsUse square root and cube root symbols to represent solutions to equations of the form $x 2=p$ and $x 3=p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{ } 2$ is irrational.

The Golden Ratio

Geometry, the
Common
Core, and
Proof
John T.
Baldwin,
Andreas
Mueller
Overview
From
Geometry to
Numbers
Proving the
field axioms
Interlude on
Circles
An Area
function
Side-splitter
Pythagorean
Theorem
Irrational
Numbers

Consider the diagram below where $A B D C$ is a rectangle, $B D=D E, C E=C G$ and $G H$ is parallel to $C D$ and $\frac{C D}{B D}=\frac{A C}{E C}=\frac{A F}{A G}=\phi$.

Irrationality of the Golden Ratio

Suppose $\phi=\frac{C D}{B D}=\frac{m}{n}$ for some integers m, n. How can you now express each of the lengths $C D, B D, C E, A C, G H, A G$?

Is the choice of such m, n possible?

Irrationality of the Golden Ratio

Suppose $\phi=\frac{C D}{B D}=\frac{m}{n}$ for some integers m, n. How can you now express each of the lengths $C D, B D, C E, A C, G H, A G$?

Is the choice of such m, n possible? Howard on Fibonacci http://homepages.math.uic.edu/~howard/spirals/

