Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint

Feb. 2. Absolute values and Functions

John T. Baldwin

February 2, 2009

LOGISTICS

Feb. 2. Absolute values and Functions

> John T Baldwir

Function

Homework from an advanced standpoin $Webpage:\ www.math.uic.edu/\tilde{j}baldwin$

email: jbaldwin@uic.edu

office hours: By appointment:

name cards

Feb 2: Overview

Feb. 2. Absolute values and Functions

> John T Baldwii

Functior

Homeworl from an advanced standpoin

- graphing distance versus time
- 2 absolute value
- 3 Homework from an Advanced Standpoint
 - 1 Rethinking rules
 - Formulas, Equations and functions
- Cartoon and KK reading
- Matters arising

Concept before Name

Feb. 2. Absolute values and Functions

> John T Baldwir

Functions

Homework from an advanced standpoin George goes for a walk in the park. The y-coordinate denote the distance along the path from his starting place that he has reached at time t.

Tell a story to explain this graph (on handout). Is this the graph of a function. If so, what is the rule?

Concept before Name

Feb. 2. Absolute values and Functions

> John T Baldwir

Functions

Homework from an advanced standpoin George goes for a walk in the park. The y-coordinate denote the distance along the path from his starting place that he has reached at time t.

Tell a story to explain this graph (on handout). Is this the graph of a function. If so, what is the rule?

Piece-wise definable functions

A function is piecewise definable if we write a different formula for each of several intervals to define the function.

Ahren's Axiom

Feb. 2. Absolute values and Functions

> John T. Baldwin

Functions

Homeworl from an advanced standpoin

Introduce the concept and help students understand it before giving a name.

Distance

Feb. 2. Absolute values and Functions

> John T. Baldwin

Functions

Homeworl from an advanced standpoin

Now consider the first two problems on the worksheet about trips to Urbana.

Absolute Value

Feb. 2. Absolute values and Functions

> John T Baldwir

Functions

Homework from an advanced standpoint The distance between two real numbers x and y is called the absolute value of x-y and written:

$$|x - y|$$
.

CME -202 Do problems on 202/203

Theorem 3.1

Feb. 2. Absolute values and Functions

> John T. Baldwir

Functions

Homewor from an advanced standpoin

Theorem

The absolute value of a number x is its distance from 0 on the number line.

Absolute value again

Feb. 2. Absolute values and Functions

> John T. Baldwin

Functions

Homework from an advanced standpoin

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

Absolute value in equations and inequalities

Feb. 2. Absolute values and Functions

John T. Baldwin

Functions

Homework from an advanced standpoint What are the points whose distance from 3 is 5. (CME 204)

Absolute value in equations and inequalities

Feb. 2. Absolute values and Functions

> John T Baldwir

Functions

Homework from an advanced standpoint What are the points whose distance from 3 is 5. (CME 204) Graph on the number line the set of points whose distance from 3 is at most 5.

Absolute value in equations and inequalities

Feb. 2. Absolute values and Functions

> John T Baldwir

Functions

Homeworl from an advanced standpoin What are the points whose distance from 3 is 5. (CME 204)

Graph on the number line the set of points whose distance from 3 is at most 5.

Solve the following inequality and graph the solution set on the number line.

$$|2x - 5| < 10$$

Hard Problem

Feb. 2. Absolute values and Functions

> John T. Baldwir

Functions

Homework from an advanced standpoint Solve the following inequality and graph the solution set on the number line. Do both intuitively, formally and with graphing calculator.

$$|.5x + 3.5| < 4$$

John T Baldwir

Functions

Homework from an advanced standpoint Carefully sketch on the graph below the solution region to the following system of inequalities. Label each of the straight lines on your graph.

$$\begin{array}{cccc} 2x - 3y & < & 3 \\ y & < & |2x - 5| \\ y & < & 5 \end{array}$$

Hint: Graph, then solve exactly to find the points of intersection that you actually need.

Feb. 2. Absolute values and Functions

> John T. Baldwir

Function

Homework from an advanced standpoint Think about the question: What is a rule? as we look at the homework problems.

Handout

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint hw 1a, 4 exact; in-out vrs out-in

Handout

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint hw 1a, 4 exact; in-out vrs out-in $2a,2^x-1$ 2b, other rules

Handout

Feb. 2. Absolute values and Functions

> John T Baldwir

Function

Homework from an advanced standpoint hw 1a, 4 exact; in-out vrs out-in

 $2a,2^x-1$ 2b, other rules

3 geometric and algebraic solutions: at least three approaches

CME

Feb. 2. Absolute values and Functions

John T. Baldwin

Function

Homework from an advanced standpoint

411-5, 422-2, 422-3;

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint What is a rule?

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint What is a rule?

When are two rules different?

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint What is a rule?

When are two rules different?

When are two rules really different?

Special functions

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint Consider the CME 422: 2 and 3 $\,$

Special functions

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint Consider the CME 422: 2 and 3

$$y = 3$$
 or $f(x) = 3$ is a constant function.

Special functions

Feb. 2. Absolute values and Functions

> John T. Baldwir

Function

Homework from an advanced standpoint Consider the CME 422: 2 and 3

$$y = 3$$
 or $f(x) = 3$ is a constant function.

$$y = x$$
 or $f(x) = x$ is the identity function.

My Definition

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint A function consists of a domain and a rule.

The rule assigns exactly one output to each member of the domain.

Formulas vrs equations

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint What's the difference?

$$3x + 2 = 7x + 5$$

$$A = \pi r^2$$

Formulas vrs equations

Feb. 2. Absolute values and Functions

> John T. Baldwin

Function

Homework from an advanced standpoint What's the difference?

$$3x + 2 = 7x + 5$$

$$A = \pi r^2$$

The second abbreviates

$$A(r)=\pi r^2.$$