THE MATH BEHIND ISBN NUMBERS ${ }^{1}$

Math 300 Spring 2004

For any integers m, n, d, we say $m \equiv n \bmod d$ if d divides $m-n$ evenly. That is, $(m-n)=d q$ for some integer q. A non-negative integer $p \neq 1$ is prime if is divisible only by itself and 1 . We assume the 'division algorithm': for any integer a and positive integer d there are integers q and r with $0 \leq r<d$ such that $a=d q+r$.

Lemma 0.1 For any d if $m \not \equiv 0 \bmod d$ then for any $a, a \not \equiv a+m \bmod d$.
Proof. If $a \equiv a+m \bmod d$, d divides $a-(a+m)$ evenly, that is a divides m evenly so $m \equiv 0 \bmod d$.

Definition 0.2 An ideal I is a set of integers closed under addition and subtraction. (Equivalently, if $a \in I$ and n is an integer then $n a \in I$.)

Thus the smallest ideal containing two positive integers a, b is the set of all linear combinations: $x a+y b$ with x, y integers. We call this the ideal generated by a and b.

Definition 0.3 The greatest common divisor of a and b is the largest positive integer that evenly divides both a and b.

Theorem 0.4 If a and b are positive integers the least number in the ideal I generated by a and b is the greatest common divisor of a and b.

Proof. Let d be the smallest positive number in I. Suppose for contradiction that d does not divide a. So $a=d q+r$ with $0<r<d$. But d also equals $x a+b y$. So

$$
r=a-(x a+b y) d=(x-1) a+b y
$$

This contradicts the assumption that d is the smallest positive number in I. For similar reasons d divides a. Any number which divides both a and b divides any linear combination of them, in particular, d. Thus, d is the greatest common divisor.

Lemma 0.5 If a prime p divides a product ab, it must divide one of the factors.
Proof. If p does not divide a then the greatest common divisor of a and p is 1 so by Lemma 0.4 for some $x, y, x p+y a=1$. So $x p b+y a b=b$. Since p divides $a b$, we conclude by Lemma 0.1, that p divides b, as required.

[^0]
1 Number of Primes

This page is an entertaining proof that there are infinitely many primes. It is purely for you amusement and is not needed for the assignment.

As a geometric series, for any prime p :

$$
\frac{1}{1-\frac{1}{p}}=\sum_{n=1}^{n=\infty} \frac{1}{p^{n}}
$$

So

$$
\Pi_{p} \frac{1}{1-\frac{1}{p}}=\Pi_{p} \Sigma_{n=1}^{n=\infty} \frac{1}{p^{n}}
$$

where the product is taken over all primes p. Note that since every n is uniquely written as a product to primes the right hand side equals

$$
\sum_{n=1}^{n=\infty} \frac{1}{n} .
$$

Since the harmonic series diverges the right hand side is infinite. But if there are only finitely many primes the left hand side is finite.

[^0]: ${ }^{1}$ PSee Number Theory by Hardy and Wright

