Two problem solutions

John T. Baldwin

April 17, 2007

Page 184, number 9. Prove (11.1.4) that if there is an injection $f: X \mapsto N_{n}$ then X is finite and the cardinality of X is at most n.

Proof. We work by induction on n. If $n=1$, then an injection into N_{1} must be onto. So f is invertible and X is a finite set with cardinality n.

Induction Hypothesis: Suppose that for any X if there is an injection f from X into N_{k} then X is finite and the cardinality of X is at most k.

Induction step: We must prove for any X if there is an injection f from X into N_{k+1} then X is finite and the cardinality of X is at most $k+1$.

Case 1: $k+1$ is not in the range of f. Then f is an injection into N_{k} and the result is immediate from the induction hypothesis.

Case 2: $k+1$ is in the range of f. Say $f(a)=k+1$. Now let g be the restriction of f to $X-\{a\}$. Then g is an injection of $X-\{a\}$ into N_{k}. So again by induction, $X-\{a\}$ is finite and $|X-\{a\}|$ is some $m \leq k$. Then by 10.2.1 (the addition principle), $X=X \cup\{a\}$ is a disjoint union of finite sets, so X is finite and $|X|=m+1 \leq k+1$.

Page 184 number 10. Prove (11.1.6) that if X and Y are non-empty finite sets with $|X|<|Y|$, there is no surjection from X onto Y.

Proof. Suppose for contradiction that such f exists. By the definition of finite there exists an $m<n$ and functions g_{1}, g_{2} such that g_{1} is a bijection from N_{m} onto X and g_{2} is a bijection from N_{m} onto Y. But then $h=g_{2}^{-1} \circ f \circ g_{1}$ is a surjection from N_{m} onto N_{n}. Now we can find an injection $h^{\prime}: N_{n} \mapsto N_{m}$; $h^{\prime}(y)$ is defined to be the least $k<m$ such that $h(k)=y$. Now by 11.1.1 the existence of h^{\prime} implies $m \leq n$. This contradiction completes the proof.

