
From 5.2:

8. (a) a2 = 1(1+1) = 2, a3 = 2(2+1) = 6, a4 = 3(6+2) = 24, a5 = 4(24+6) =
120.

(b) Guess an = n!. Base Cases. n = 0 and n = 1. a0 = 1 by definition and
0! = 1 by convention. a1 = 1 by definition and 1! = 1. We get equality in both
cases so it is true for n = 0 and n = 1. inductive Step. Assume that ak = k!
for all 0 ≤ k ≤ n and prove that an+1 = (n+1)!. In particular, we will assume
an = n! and an−1 = (n − 1)!. By definition, an+1 = n(an + an−1). By the
induction hypothesis, this is equal to n(n!+(n−1)!) = n(n·(n−1)!+(n−1)!) =
n(n+1)(n− 1)! = (n+1)!. Thus by strong induction, it is true for all n ≥ 0.

35. The goal here is to prove that Φn+1 = Φn +Φn−1.
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From 5.3:

11. (a) The characteristic polynomial is x2 + 8x + 16 = (x + 4)2 which has a
double root of −4. So the general form of the solution is an = c1(−4)n +
c2n(−4)n. We use the initial conditions to find c1 and c2. a0 = 5 = c1(−4)0+
c2(0)(−4)0 = c1. a1 = 17 = c1(−4)1+ c2(1)(−4)1 = 5(−4)− 4c2 so c2 = − 37

4
.

The solution is

an = 5(−4)n −
37

4
n(−4)n = 5(−4)n + 37n(−4)n−1.

16. (b) To find a particular solution, try pn = (a + bn)2n. We must have pn =
4pn−1 + 3n2

n, that is, (a + bn)2n = 4(a + b(n − 1))2n−1 + 3n2n. Divide
by 2n to get a + bn = 2a + 2bn − 2b + 3n. Collect coefficients of n to get
n(b + 3) + (a − 2b) = 0. We must have b + 3 = 0 so b = −3. We must have
a− 2b = 0 so a = 2b = −6. The particular solution is pn = −(6 + 3n)2n. We
now need a solution of the homogeneous recurrence relation an = 4an−1. The
characteristic polynomial is x2 − 4x = x(x− 4) which has roots 0 and 4. The
homogeneous solution is qn = c14

n + c20
n = c14

n. So the general solution is
1
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an = pn + qn = −(6 + 3n)2n + c14
n. We use the initial condition to solve for

c1. a0 = 4 = −(6 + 0)20 + c14
0 = −6 + c1 so c1 = 10. The solution is

an = 10 · 4n − (6 + 3)2n.

20. (a) There are 3 moves required for the n = 2 case and 7 required for the n = 3
case. The tables for each case are given below.

n = 2 A B C
Initial position 1,2 * *
Move 1 2 1 *
Move 2 * 1 2
Move 3 * * 1,2

n = 3 A B C
Initial position 1,2,3 * *
Move 1 2,3 * 1
Move 2 3 2 1
Move 3 3 1,2 *
Move 4 * 1,2 3
Move 5 1 2 3
Move 6 1 * 2,3
Move 7 * * 1,2,3

(b) To move n disks from peg A to peg C, we first move the smallest n − 1
disks to peg B, which takes an−1 moves. We move the largest disk to peg
C, which takes one move. We move the smallest n − 1 disks to peg C, on
top of the largest disk, which takes another an−1 moves. Thus we have that
an = 2an−1 + 1. The initial condition is that it takes one move to move 1
disk, so a1 = 1.

(c) For a particular solution, try pn = c. We need pn = 2pn−1+1 so c = 2c+1
so c = −1. The particular solution is pn = −1. We now need a solution of the
homogeneous recursion relation an = 2an−1. The characteristic polynomial is
x2−2x = x(x−2) which has roots 2 and 0. The solution is qn = c12

n+c20
n =

c12
n. The general solution is an = pn + qn = −1 + c12

n. We use the initial
condition to find c1. a1 = 1 = −1+ c12

1 so 2c1 = 2 and c1 = 1. The solution
is

an = 2
n − 1.

(d) To move 8 disks, it will take 28 − 1 = 255 seconds, or 4.25 minutes. To
move 16 disks, it will take 216 − 1 = 65536 seconds, or 1092.25 minutes, or
about 18.2 hours. To move 32 disks, it will take 232 − 1 seconds, which is
about 136.2 years. To move 64 disks, it will take 264 − 1 seconds, which is
about 5.8× 1011 years, that is, over 580,000 million years.
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From 6.1:

5. Let P , G, and C be the sets of children who purchased popsicles, gum, and
candy bars, respectively. Then we should have that the number of students
who purchased at least one item was

|P ∪G ∪ C| = |P |+ |G|+ |C| − |P ∩G| − |P ∩ C| − |G ∩ C|+ |P ∩G ∩ C|
≤ |P |+ |G|+ |C| − |P ∩G| − |P ∩ C| − |G ∩ C|
= 10 + 7 + 12− 5− 6− 2 = 16.

So the clerk definitely made a mistake since there were only 15 children.

10. We are given that
• |U | = 75.
• |A1| = |A2| = |A3| = |A4| = 28.
• |A1∩A2| = |A1∩A3| = |A1∩A4| = |A2∩A3| = |A2∩A4| = |A3∩A4| = 12.
• |A1 ∩ A2 ∩ A3| = |A1 ∩ A2 ∩ A4| = |A1 ∩ A3 ∩A4| = |A2 ∩ A3 ∩A4| = 5.
• |A1 ∩ A2 ∩ A3 ∩ A4| = 1.

(a) We want |(A1∪A2∪A3∪A4)
c| = |U |−∑

1≤i≤4
|Ai|+

∑

1≤i<j≤4
|Ai∩Aj |−

∑

1≤i<j<k≤4 |Ai∩Aj∩Ak |+|A1∩A2∩A3∩A4| = 75−4·28+6·12−4·5+1 = 16.

(b) We want the number of elements that are in exactly two sets. Since all
of the sets and their intersections have the same size, we can find the number
of elements that are in A1 and A2 but not in A3 and A4 and multiply this
number by 6 (there are 6 pairs of sets). This number is

|(A1 ∩A2)\(A3 ∪ A4)|
= |A1 ∩ A2| − |(A1 ∩ A2) ∩ (A3 ∪ A4)|
= |A1 ∩ A2| − |((A1 ∩A2) ∩ A3) ∪ ((A1 ∩ A2) ∩ A4)|
= |A1 ∩ A2| − (|A1 ∩ A2 ∩ A3|+ |A1 ∩ A2 ∩ A4| − |(A1 ∩ A2 ∩A3) ∩ (A1 ∩ A2 ∩A4)|)
= |A1 ∩ A2| − |A1 ∩ A2 ∩ A3| − |A1 ∩ A2 ∩ A4|+ |A1 ∩ A2 ∩ A3 ∩ A4|
= 12− 5− 5 + 1 = 3

So the number of elements in any given pair of subsets, but not the others,
is 3. The total number of elements that are in exactly two subsets is 6 ·3 = 18.

15. Let A = {n|0 ≤ n ≤ 10, 000, 3|n}, B = {n|0 ≤ n ≤ 10, 000, 5|n}, C = {n|0 ≤
n ≤ 10, 000, 7|n}, and D = {n|0 ≤ n ≤ 10, 000, 11|n}. First find the size of
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each set and all the intersections.

|A| = b10, 000
3

c = 3333

|B| = b10, 000
5

c = 2000

|C| = b10, 000
7

c = 1428

|D| = b10, 000
11

c = 909

|A ∩ B| = b10, 000
3 · 5 c = 666

|A ∩ C| = b10, 000
3 · 7 c = 476

|A ∩D| = b10, 000
3 · 11 c = 303

|B ∩ C| = b10, 000
5 · 7 c = 285

|B ∩D| = b10, 000
5 · 11 c = 181

|C ∩D| = b10, 000
7 · 11 c = 129

|A ∩ B ∩ C| = b10, 000
3 · 5 · 7c = 95

|A ∩ B ∩D| = b 10, 000
3 · 5 · 11c = 60

|A ∩ C ∩D| = b 10, 000
3 · 7 · 11c = 43

|B ∩ C ∩D| = b 10, 000
5 · 7 · 11c = 25

|A ∩ B ∩ C ∩D| = b 10, 000

3 · 5 · 7 · 11c = 8

(a) We want |A ∪ B ∪ C ∪D| = |A| + |B| + |C| + |D| − |A ∩ B| − |A ∩ C| −
|A∩D| − |B ∩C| − |B ∩D| − |C ∩D|+ |A∩B ∩C|+ |A∩B ∩D|+ |A∩C ∩
D|+ |B ∩C ∩D| − |A∩B ∩C ∩D| = 3333+2000+1428+909− 666− 476−
303− 285− 181− 129 + 95 + 60 + 43 + 25− 8 = 5845.
(b) Here we want |(A∩B)\(C ∪D)| = |A∩B| − |A∩B ∩C| − |A∩B ∩D|+
|A∩B ∩C ∩D| = 666− 95− 60+8 = 519. See problem 10 for the derivation
of this expression.

(c) For each interesection of three sets, we find the number of elements in that
intersection that are not also in the fourth set.

|(A ∩ B ∩ C)\D| = |A ∩ B ∩ C| − |A ∩ B ∩ C ∩D| = 95− 8 = 87
|(A ∩ B ∩D)\C| = |A ∩ B ∩D| − |A ∩B ∩ C ∩D| = 60− 8 = 52
|(A ∩ C ∩D)\B| = |A ∩ C ∩D| − |A ∩B ∩ C ∩D| = 43− 8 = 35
|(B ∩ C ∩D)\A| = |B ∩ C ∩D| − |A ∩B ∩ C ∩D| = 25− 8 = 17
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These are the four possible combinations of three sets that an element could
belong to. We add them up for the answer: 87 + 52 + 35 + 17 = 191.

(d) The elements that are in at most three sets cannot be in all four, so we
subtract |A ∩ B ∩ C ∩D| from the size of the universe: 10, 000− 8 = 9992.


