From 6.2:
4. (a) The first digit can be anything but 0 , so we have 9 choices. The second digit can be anything but the first digit, so 9 choices. The last digit can be anything but the first two, 8 choices. The total is $9 \times 9 \times 8=648$.
(b) There are five choices for the last digit (1, 3, 5, 7, 9). The first digit can be anything but 0 or the last digit so there are 8 choiced. The second digit can be anything but the other two, so 8 choices. The total is $5 \times 8 \times 8=320$.
10. We have 8 choices for each of the first two digits, 9 choices for the third digit, and 10 choices for the last four digits. The total is $8^{2} \times 9 \times 10^{4}=5,760,000$.
14. (a) There are three choices for the first leg and five for the second leg, so a total of $3 \times 5=15$.
(b) There are 15 routes to get from Cupids to Hearts Desire, as we saw in (a). Next choose one of the 5 routes to go back from Heats Desire to Harbour Grace, then choose one of the 3 routes from Harbour Grace to Cupids. The total is $15 \times 5 \times 3=225$.
(c) Again, there are 15 ways to get to Hearts Desire. Now we can't repeat the road we already used to get back to Harbour Grace, so we have 4 choices. We can't repeat the road we used between Harbour Grace and Cupids so we have 2 choices. The total is $15 \times 4 \times 2=120$.

From 6.3:
12. Let a_{i} be the number of words George learns on day i, and let $b_{i}=a_{1}+a_{2}+$ $\cdots+a_{i}$ be the number of words George has learned through the $i^{t h}$ day. Since $a_{i} \geq 1$ for all i, we know that

$$
1 \leq b_{1}<b_{2}<\cdots<b_{53} \leq 90
$$

and that

$$
16 \leq b_{1}+15<b_{2}+15<\cdots<b_{53}+15 \leq 105
$$

These are $53 \times 2=106$ integers between 1 and 105 , so by the Pigeon-Hole Principle, two of them must be the same. We can't have $b_{i}=b_{j}$ or $b_{i}+15=$ $b_{j}+15$ so there must be some i and some j such that $b_{i}=b_{j}+15$ and $i>j$. Then we have $a_{1}+a_{2}+\cdots a_{i}=a_{1}+a_{2}+\cdots+a_{j}+15$. Cancelling like terms gives $a_{j+1}+a_{j+1}+\cdots+a_{i}=15$. The consecutive days are those between day $j+1$ and day i.
17. Divide the triangle into four smaller equilateral triangles with side lengths of $\frac{1}{2}$ as shown below.

By the Pigeon-Hole Principle, of any five points chosen in the triangle, two must lie within the same smaller triangle. The furthest apart these two points can be is the side length $\frac{1}{2}$.
23. Any number between 1 and 200 can be written as $2^{k} a$ with $k \geq 0$ and a odd such that $1 \leq a \leq 199$. The possible values of a are 100 odd numbers. If we choose 101 integers from $\{1,2, \ldots, 200\}$, two of those integers, x and y must have the same value of a. That is, two of our chosen numbers are $x=2^{i} a$ and $y=2^{j} a$ with $i>j$. Thus $x=2^{i-j}\left(2^{j} a\right)=2^{i-j} y$ so x is divisible by y.

