From 1.2:

12. $n^{2}-n+5=n(n-1)+5$. Since n and $n-1$ are consecutive integers, one of them must be even, so $n(n-1)$ is even. Then $n(n-1)+5$ must be odd since an even number plus an odd number is odd.
Alternate: Using Cases.
Case 1: n is even. Then $n=2 k$ for some integer k. Then $n^{2}-n+5=$ $4 k^{2}-2 k+5=2\left(2 k^{2}-k+2\right)+1$ is odd.
Case 2: n is odd. Then $n=2 k+1$ for some integer k. Then $n^{2}-n+5=$ $\left(4 k^{2}+4 k+1\right)-(2 k+1)+5=4 k^{2}+2 k+5=2\left(2 k^{2}+k+2\right)+1$ is odd.
13. Look at $a^{2}-b^{2}$ in the four suggested cases.
(i) $a=2 n$ and $b=2 m$ for some integers n, m. Then $a^{2}-b^{2}=4 n^{2}-4 m^{2}=$ $2\left(2 n^{2}-2 m^{2}\right)$ is even.
(ii) $a=2 n+1$ and $b=2 m+1$ for some integers n, m. Then $a^{2}-b^{2}=$ $\left(4 n^{2}+4 n+1\right)-\left(4 m^{2}+4 m+1\right)=2\left(2 n^{2}+2 n-2 m^{2}-2 m\right)$ is even.
(iii) $a=2 n$ and $b=2 m+1$ for some integers n, m. Then $a^{2}-b^{2}=$ $4 n^{2}-\left(4 m^{2}+4 m+1\right)=2\left(2 n^{2}-2 m^{2}-2 m\right)+1$ is odd.
(iv) $a=2 n+1$ and $b=2 m$ for some integers n, m. Then $a^{2}-b^{2}=$ $4 n^{2}+4 n+1-4 m^{2}=2\left(2 n^{2}+2 n-2 m^{2}\right)+1$ is odd. From this we see that $a^{2}-b^{2}$ is odd exactly when one of a and b is odd and the other is even. This is the necessary and sufficient condition because $a^{2}-b^{2}$ is odd if and only if one of a and b is odd and the other is even.
14. Proof by contradiction. We begin by assuming the negation of what we want to prove, that is, that there is a smallest positive real number, r. Then consider $\frac{r}{2}$. This is a real number (since a real divided by a real is real) and is positive (since a positive number divided by a positive number is positive). In addition, $\frac{r}{2}<r$. But this contradicts our assumption that r was the smallest. Thus the assumption cannot be true and there is no smallest positive real number.
15. (d) Counterexample: If $a=\sqrt{2}$ and $b=-\sqrt{2}$, then $a+b=0$, which is rational, so the hypothesis is true. However, a and b are not rational (we proved this fact in class). So the statement is false.

From 1.3:

1. (e) The truth table is:

p	q	r	$q \rightarrow r$	$p \rightarrow(q \rightarrow r)$	$p \wedge q$	$(p \wedge q) \vee r$	$(p \rightarrow(q \rightarrow r)) \rightarrow((p \wedge q) \vee r)$
T	T	T	T	T	T	T	T
T	T	F	F	F	T	T	T
T	F	T	T	T	F	T	T
T	F	F	T	T	F	F	F
F	T	T	T	T	F	T	T
F	T	F	F	T	F	F	F
F	F	T	T	T	F	T	T
F	F	F	T	T	F	F	F

