From 1.2:

12. $n^2 - n + 5 = n(n-1) + 5$. Since n and n-1 are consecutive integers, one of them must be even, so n(n-1) is even. Then n(n-1) + 5 must be odd since an even number plus an odd number is odd.

Alternate: Using Cases.

Case 1: n is even. Then n = 2k for some integer k. Then $n^2 - n + 5 = 4k^2 - 2k + 5 = 2(2k^2 - k + 2) + 1$ is odd.

Case 2: *n* is odd. Then n = 2k + 1 for some integer *k*. Then $n^2 - n + 5 = (4k^2 + 4k + 1) - (2k + 1) + 5 = 4k^2 + 2k + 5 = 2(2k^2 + k + 2) + 1$ is odd.

14. Look at $a^2 - b^2$ in the four suggested cases.

(i) a = 2n and b = 2m for some integers n, m. Then $a^2 - b^2 = 4n^2 - 4m^2 = 2(2n^2 - 2m^2)$ is even. (ii) a = 2n + 1 and b = 2m + 1 for some integers n, m. Then $a^2 - b^2 = (4n^2 + 4n + 1) - (4m^2 + 4m + 1) = 2(2n^2 + 2n - 2m^2 - 2m)$ is even. (iii) a = 2n and b = 2m + 1 for some integers n, m. Then $a^2 - b^2 = 4n^2 - (4m^2 + 4m + 1) = 2(2n^2 - 2m^2 - 2m) + 1$ is odd. (iv) a = 2n + 1 and b = 2m for some integers n, m. Then $a^2 - b^2 = 4n^2 - 4m^2 + 4m + 1$

(nb) $a^{2} = 2n + 1$ and $b^{2} = 2m$ for some integers n, m. Then $a^{2} = 4n^{2} + 4n + 1 - 4m^{2} = 2(2n^{2} + 2n - 2m^{2}) + 1$ is odd. From this we see that $a^{2} - b^{2}$ is odd exactly when one of a and b is odd and the other is even. This is the necessary and sufficient condition because $a^{2} - b^{2}$ is odd if and only if one of a and b is odd and the other is even.

- 19. Proof by contradiction. We begin by assuming the negation of what we want to prove, that is, that there *is* a smallest positive real number, r. Then consider $\frac{r}{2}$. This is a real number (since a real divided by a real is real) and is positive (since a positive number divided by a positive number is positive). In addition, $\frac{r}{2} < r$. But this contradicts our assumption that r was the smallest. Thus the assumption cannot be true and there is no smallest positive real number.
- 25. (d) Counterexample: If $a = \sqrt{2}$ and $b = -\sqrt{2}$, then a + b = 0, which is rational, so the hypothesis is true. However, a and b are not rational (we proved this fact in class). So the statement is false.

From 1.3:

p	$ q \rangle$	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \lor r$	$(p \to (q \to r)) \to ((p \land q) \lor r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	T	F	F	\mathbf{F}	Т	Т	Т
Т	F	Т	Т	Т	\mathbf{F}	Т	Т
Т	F	F	Т	Т	\mathbf{F}	F	\mathbf{F}
F	Т	Т	Т	Т	\mathbf{F}	Т	Т
F	Т	F	F	Т	\mathbf{F}	F	\mathbf{F}
F	F	Т	Т	Т	\mathbf{F}	Т	Т
F	F	F	Т	Т	F	F	\mathbf{F}

1. (e) The truth table is: