From 1.4:

1. Verification of 6 i :

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

The columns for $\neg(p \vee q)$ and $\neg p \wedge \neg q$ are the same so they are logically equivalent.
2. (c)

$$
\begin{array}{cl}
& {[(p \rightarrow q) \vee(q \rightarrow r)] \wedge(r \rightarrow s)} \\
(13) & {[(\neg p \vee q) \vee(\neg q \vee r)] \wedge(r \rightarrow s)} \\
\text { (3) } & {[((\neg p \vee q) \vee \neg q) \vee r] \wedge(r \rightarrow s)} \\
\text { (3) } & {[(\neg p \vee(q \vee \neg q)) \vee r] \wedge(r \rightarrow s)} \\
\text { (9) } & {[(\neg p \vee 1) \vee r] \wedge(r \rightarrow s)} \\
\text { (7) } & {[1 \vee r] \wedge(r \rightarrow s)} \\
(7) & 1 \wedge(r \rightarrow s) \\
(7) & r \rightarrow s
\end{array}
$$

4. (c)

$$
\begin{array}{ll}
& \neg(p \leftrightarrow q) \\
(12) & \neg[(p \rightarrow q) \wedge(q \rightarrow p)] \\
\text { (13) } & \neg(\neg p \vee q) \wedge(\neg q \vee p)] \\
\text { (6) } & \neg(\neg p \vee q) \vee \neg(\neg q \vee p) \\
\text { (6) } & (\neg(\neg p) \wedge \neg q) \vee(\neg(\neg q) \wedge \neg p) \\
\text { (5) } & (p \wedge \neg q) \vee(q \wedge \neg p) \\
\text { (4) } & {[(p \wedge \neg q) \vee q] \wedge[(p \wedge \neg q) \vee \neg p]} \\
\text { (4) } & {[(p \vee q) \wedge(\neg q \vee q)] \wedge[(p \vee \neg p) \wedge(\neg q \vee \neg p)]} \\
\text { (9) } & {[(p \vee q) \wedge 1] \wedge[1 \wedge(\neg q \vee \neg p)]} \\
\text { (7) } & (p \vee q) \wedge(\neg q \vee \neg p) \\
\text { (5) } & (p \vee \neg(\neg q)) \wedge(\neg q \vee \neg p) \\
(13) & (\neg q \rightarrow p) \wedge(p \rightarrow \neg q) \\
\text { (12) } & p \leftrightarrow \neg \neg
\end{array}
$$

5. First, we show the statements are equivalent.

p	q	$\neg p$	$\neg q$	$p \wedge \neg q$	$(p \wedge \neg q) \rightarrow q$	$(p \wedge \neg q) \rightarrow \neg p$
T	T	F	F	F	T	T
T	F	F	T	T	F	F
F	T	T	F	F	T	T
F	F	T	T	F	T	T
1						

The statements are equivalent since their columns of the truth table are the same. You might notice that these columns are also the same as the truth table for $p \rightarrow q$, so these statements are equivalent to that. Here is how to simplify to get it using the rules.

$$
\begin{array}{cl}
& (p \wedge \neg q) \rightarrow q \\
\text { (13) } & \neg(p \wedge \neg q) \vee q \\
\text { (6) } & (\neg p \vee \neg(\neg q)) \vee q \\
\text { (5) } & (\neg p \vee q) \vee q \\
\text { (3) } & \neg p \vee(q \vee q) \\
\text { (1) } & \neg p \vee q \\
\text { (13) } & p \rightarrow q
\end{array}
$$

From 1.5:

3. (c) The second and third premises can be rewritten as $p \rightarrow r$ and $r \rightarrow s$, respecively. Using the chain rule, this gives the conclusion $p \rightarrow s$. Rewrite this as $\neg p \vee s$. We have now show that our argument is equivalent to the argument

$$
\begin{gathered}
p \vee q \\
\neg p \vee s \\
\hline q \vee s
\end{gathered}
$$

This argument is resolution, so we know it is valid.
4. (c) Rewrite the premises as implications using property 13. I have numbered the premises for reference.

(1)	$q \rightarrow p$
(2)	$(t \vee s) \rightarrow(p \vee r)$
(3)	$r \rightarrow(t \vee s)$
(4a)	$p \rightarrow(t \vee s)$
(4b)	$(t \vee s) \rightarrow p$
	$(q \vee r) \rightarrow(p \vee r)$

Combining (1) and (4a) with the chain rule gives (5) $q \rightarrow(t \vee s)$. Combine this with (3) to get $(6)(q \vee r) \rightarrow(t \vee s)((5)$ means that if q is true, then so is $(t \vee s),(3)$ means that if r is true, then so is $(t \vee s)$; thus if one of q or r is true, then so is $(t \vee s)$.) Now combine (6) and (2) with the chain rule to get the conclusion. This argument is valid.
(d) This argument is not valid. When p is false and q, r, and s are true, all of the premises are true but the conclusion is false. (Note: these are not the only truth values for which this is true.) I found these by trying to make the conclusion false. I wanted $(p \wedge q)$ to be false and $[(q \wedge r) \vee s]$ to be true. This was one way that worked and also all the premises came out to be true.
5. (d) Let p be the statement "I stay up late at night," and q be the statement "I am tired in the morning." Then, in symbols, the argument is

$$
\begin{gathered}
p \rightarrow q \\
\neg p \\
\hline \neg q
\end{gathered}
$$

The following row of the truth table shows that this argument is not valid since in this case both premises are true, but the conclusion is false.

p	q	$p \rightarrow q$	$\neg p$	$\neg q$
F	T	T	T	F

8. (a) In determining the validity of arguments we are concerned only with the cases in which all of the premises are true. For the premise $p \wedge q$ to be true, the values of p and q both have to be true, and vice versa so we can use p and q as premises since they are both true if and only if $p \wedge q$ is true.
(b) Replace $p \wedge q$ with the premises p and q.
(1) p
(2) q
(3) $p \rightarrow r$
(4) $\quad s \rightarrow \neg q$
$\neg s \wedge r$

Combine (1) and (3) with modus ponens to get (5) r. Combine (2) and (4) with modus tollens to get (6) $\neg s$. The argument is now equivalent to

$$
\begin{array}{cc}
(5) & r \\
(6) & \neg s \\
\hline & \neg s \wedge r
\end{array}
$$

This is obviously a valid argument.

