
From 4.2:

18. We will use the Euclidean algorithm.

5k + 3 = 1 · (3k + 2) + (2k + 1)

3k + 2 = 1 · (2k + 1) + (k + 1)

2k + 1 = 1 · (k + 1) + k

k + 1 = 1 · k + 1

k = k · 1 + 0

The last nonzero remainder is 1 so it seems that gcd(5k + 3, 3k + 2) = 1.
We just need to check that we used the division algorithm correctly at each
step. But this is cleared up by noting that for k > 0, 0 ≤ 2k + 1 < 3k + 2,
0 ≤ k + 1 < 2k + 1, and 0 ≤ k < k + 1. in addition, if k > 1, 0 ≤ 1 < k.

22. Assume that gcd(a, c) = 1, and b|c. Let’s call gcd(a, b) = g. If g is the greatest
common divisor of a and b, the g|a and g|b. By the transitivity of divisibility,
we have that g|b and b|c so g|c. So g|a and g|c, so g ≤ gcd(a, c) = 1 so
gcd(a, b) = 1.

From 4.4:

3. (b) 43, 197 = 129 · 333 + 240 so 43197 ≡ 240 (mod 333).
(d) −125, 617 = −399 · 315 + 68 so −125, 617≡ 68 (mod 315).
(e) 11, 111, 111, 111 = 10, 001, 000 · 1111 + 111 so 11, 111, 111, 111 ≡ 111
(mod 1111).

6. (c) 17, 123 = 2853 · 6+5 so 17, 123 ≡ 5 (mod 6). Using this and the fact that
55 = 3125 ≡ 5 (mod 6), we have

(17, 123)50 ≡ 550 ≡
(

55
)10

≡ 510 ≡
(

55
)2
≡ 52 ≡ 1 (mod 6).

9. (b) We can’t divide by 2 since gcd(2, 6) 6= 1, and multiplying doesn’t give
anything nicer either, so let’s make a table:

x 0 1 2 3 4 5
4x ≡ 0 4 2 0 4 2

So x ≡ 2 (mod 6) and x ≡ 5 (mod 6) are the solutions.
(d) We notice from the table in (a) that there are no values of x such that
4x ≡ 3 (mod 6), so there is no solution.
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11. (d) Multiply the first congruence by 2 to get 14x+4y ≡ 6 (mod 15). Subtract
the second equivalence from this one to get 5x ≡ 0 (mod 15). This has
solutions x ≡ 0, 3, 6, 9, 12 (mod 15).

If x ≡ 0 (mod 15), we have 2y ≡ 3 and 4y ≡ 6 (mod 15). The second is
just twice the first, so we solve the first. Notice that 2y ≡ 3 ≡ 18 (mod 15).
Since gcd(2, 15) = 1, we can divide by 2 to get y ≡ 9 (mod 15). One solution
is x ≡ 0 and y ≡ 9.

If x ≡ 3 (mod 15), we have 2y ≡ 3 − 21 ≡ 12 and 4y ≡ 6 − 27 ≡ 9
(mod 15). The second is twice the first so solve the first by dividing by 2:
y ≡ 6 (mod 15). One solution is x ≡ 3 and y ≡ 6.

If x ≡ 6 (mod 15), we have 2y ≡ 3 − 42 ≡ 6 and 4y ≡ 6 − 54 ≡ 12
(mod 15). The second is twice the first so solve the first by dividing by 2:
y ≡ 3 (mod 15). One solution is x ≡ 6 and y ≡ 3.

If x ≡ 9 (mod 15), we have 2y ≡ 3 − 63 ≡ 0 and 4y ≡ 6 − 81 ≡ 0
(mod 15). The second is twice the first so solve the first by dividing by 2:
y ≡ 0 (mod 15). One solution is x ≡ 9 and y ≡ 0.

If x ≡ 12 (mod 15), we have 2y ≡ 3 − 84 ≡ 9 and 4y ≡ 6 − 108 ≡ 3
(mod 15). The second is twice the first so we solve the first by dividing the
following by 2: 2y ≡ 9 ≡ 24 (mod 15) so y ≡ 12 (mod 15). One solution is
x ≡ 12 and y ≡ 12.

The above cover all possible cases so the solutions are: x ≡ 0, y ≡ 9;
x ≡ 3, y ≡ 6; x ≡ 6, y ≡ 3; x ≡ 9, y ≡ 0; x ≡ 12, y ≡ 12.

15. (b) The statement is true. We assume that a ≡ b (mod n) and want to prove
that a2 ≡ b2 (mod n). If a ≡ b (mod n), then n|(a − b) so a − b = nk for
some integer k. a2 − b2 = (a − b)(a + b) = nk(a + b) = n[k(a + b)]. k(a + b)
is an integer so n|(a2 − b2) thus a2 ≡ b2 (mod n).

From 5.1:

3. Base Case: We can fill an order for n = 32 pounds of fish by using one
5-pound and 3 nine-pound fish.

Inductive Step: We assume that we can fill an order of n fish. We need to
show that we can fill an order of n + 1 fish.

– If our order for n fish has a 9-pound fish, replace it with two 5-pound
fish. We replaced 9 pounds with 10 pounds, so the total number of pounds
increases from n to n+ 1.

– If our order for n fish has no 9-pound fish, then since n ≥ 32, there must
be at least seven 5-pound fish. Replace these with four 9-pound fish.
We replaced 35 pounds with 36 pounds, so the total number of pounds
increases from n to n+ 1.

So we can fill an 32-pound order and if we can fill an n-pound order then
we can fill an n + 1-pound order, so we can fill any order of n pounds for
n ≥ 32.
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4. (b) Base Case: For n = 1, n3 + 2n = 13 + 2 · 1 = 1 + 2 = 3 is divisible by 3,
so the statement is true for n = 1.

Inductive Step: We assume that the statement is true for n, that is, we
assume that n3+2n is divisible by 3. We prove that the statement is true for
n + 1, that is, we prove that (n + 1)3 + 2(n + 1) is divisible by 3.

(n+ 1)3 + 2(n+ 1) = n3 + 3n2 + 3n+ 1 + 2n+ 2 = (n3 + 2n) + 3n2 + 3n+ 3.

We are assuming that n3 +2n is divisible by 3, that is, that n3 +2n = 3k for
some integer k. So the above is equal to

(n3 + 2n) + 3n2 + 3n+ 3 = 3k + 3n2 + 3n+ 3 = 3(k + n2 + n+ 1),

which is divisible by 3 since k + n2 + n+ 1 is an integer.
Thus the statement is true for n = 1 and if it is true for n then it is true

for n + 1 so it is true for all n ≥ 1.


