Homework 3, selected solutions, Math 261, Spring '02

1.4

2.c). Simplify $[(p \rightarrow q) \vee(q \rightarrow r)] \wedge(r \rightarrow s)$.
$(((\neg p) \vee q) \vee((\neg q) \vee r)) \wedge(r \rightarrow s)$
$((\neg p) \vee q \vee(\neg q) \vee r) \wedge(r \rightarrow s)$
$((\neg p) \vee \mathbf{1} \vee r) \wedge(r \rightarrow s)$
$\mathbf{1} \wedge(r \rightarrow s)$
$r \rightarrow s$
5. $[(p \wedge(\neg q)) \rightarrow q] \Longleftrightarrow[(\neg(p \wedge(\neg q))) \vee q] \Longleftrightarrow[((\neg p) \vee q) \vee q] \Longleftrightarrow[(\neg p) \vee q]$ $[(p \wedge(\neg q)) \rightarrow \neg p] \Longleftrightarrow[(\neg(p \wedge(\neg q))) \vee \neg p] \Longleftrightarrow[((\neg p) \vee q) \vee \neg p] \Longleftrightarrow$ $[(\neg p) \vee q]$

So these are both logically equivalent to $(\neg p) \vee q$.
1.5
1.d)

$$
\begin{gathered}
p \rightarrow q \\
(q \vee(\neg r)) \rightarrow(p \wedge s) \\
s \rightarrow(r \vee q)
\end{gathered}
$$

Assume that the argument is not valid. This means that we can find truth values for p, q, r, and s such that the premises are true but the conclusion is false. Since $s \rightarrow(r \vee q)$ is false, we must have s true and $r \vee q$ false. But this means both r and q are false. Since $p \rightarrow q$ is true and q is false, p must be false. But then $q \vee(\neg r)$ is true and $p \wedge s$ is false, contradicting the truth of $(q \vee(\neg r)) \rightarrow(p \wedge s)$. Hence we have a contradiction, so the argument is valid.
5. c) Let $p=$ "I stay up late at night.", and $q=$ "I am tired in the

$$
p \rightarrow q
$$

morning." Then the given argument is \qquad
which is valid by modus tollens.
d) The given argument is $\frac{\begin{array}{c}p \rightarrow q \\ \neg p\end{array}}{\neg q}$

This is not valid, since when $p=F$ and $q=T$, the hypotheses are true, but the conclusion $\neg q=F$ is false.

