Homework 3, selected solutions, Math 261, Spring $\mathbf{02}$

1.42.c). Simplify $[(p \to q) \lor (q \to r)] \land (r \to s)$. $(((\neg p) \lor q) \lor ((\neg q) \lor r)) \land (r \to s)$ $((\neg p) \lor q \lor (\neg q) \lor r) \land (r \to s)$ $((\neg p) \lor \mathbf{1} \lor r) \land (r \to s)$ $1 \wedge (r \rightarrow s)$ $r \rightarrow s$ 5. $[(p \land (\neg q)) \to q] \iff [(\neg (p \land (\neg q))) \lor q] \iff [((\neg p) \lor q) \lor q] \iff [(\neg p) \lor q]$ $[(p \land (\neg q)) \to \neg p] \iff [(\neg (p \land (\neg q))) \lor \neg p] \iff [((\neg p) \lor q) \lor \neg p] \iff$ $[(\neg p) \lor q]$ So these are both logically equivalent to $(\neg p) \lor q$. 1.51.d) $p \rightarrow q$ $\frac{(q \lor (\neg r)) \to (p \land s)}{s \to (r \lor q)}$

Assume that the argument is not valid. This means that we can find truth values for p, q, r, and s such that the premises are true but the conclusion is false. Since $s \to (r \lor q)$ is false, we must have s true and $r \lor q$ false. But this means both r and q are false. Since $p \to q$ is true and q is false, p must be false. But then $q \lor (\neg r)$ is true and $p \land s$ is false, contradicting the truth of $(q \lor (\neg r)) \to (p \land s)$. Hence we have a contradiction, so the argument is valid.

5. c) Let p = "I stay up late at night.", and q = "I am tired in the $p \rightarrow q$ morning." Then the given argument is $\neg q$ $\neg p$

which is valid by modus tollens.

 $p \rightarrow q$ d) The given argument is $\neg p$ $\neg q$

This is not valid, since when p = F and q = T, the hypotheses are true, but the conclusion $\neg q = F$ is false.