Elimination of Imaginaries in strongly minimal sets with flat geometries Conference in honor of Viktor Verbovskiy, Almaty

> John T. Baldwin University of Illinois at Chicago

> > Sept 26, 2023

John T. Baldwin University of Illinois at ChElimination of Imaginaries in strongly mini

Sept 26, 2023 1 / 30

- 2 Groups, definable closure, and elimination of imaginaries
- 3 The Hrushovski Construction
- The structure of acl(X)
- 5 Further Problems

Joint work with Vitkor Verbovskiy Thanks to Joel Berman, Gianluca Paolini,Omer Mermelstein.

Strongly Minimal Theories

<ロ> <回> <回> <回> < 回</p>

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

STRONGLY MINIMAL

Definition

T is strongly minimal if every definable set is finite or cofinite.

e.g. acf, vector spaces, successor

Definition

a is in the algebraic closure of *B* ($a \in acl(B)$) if for some $\phi(x, \mathbf{b})$: $\models \phi(a, \mathbf{b})$ with $\mathbf{b} \in B$ and $\phi(x, \mathbf{b})$ has only finitely many solutions.

Theorem

If T is strongly minimal algebraic closure defines matroid/combinatorial geometry.

- 4 同 ト 4 ヨ ト 4 ヨ ト

The trichotomy???

Zilber Conjecture

The acl-geometry of every model of a strongly minimal first order theory is

- disintegrated (lattice of subspaces distributive)
- vector space-like (lattice of subspaces modular)
- (non-locally modular)
 - very Ample Zariski Geometry iff mutually interpretable with acf
 - 2 flat \Rightarrow cm-trivial \Leftrightarrow not 2-ample
 - 3 Anything else?

Zilber: geometries \leftrightarrow canonical structures

Hrushovski gave a method of constructing strongly minimal sets that have flat geometries and admit no associative binary function with infinite domain.

There is no apparent canonical structure - only a (very flexible) method.

Baizhanov's Question

Question (1990's)

Does every strongly minimal set that admits elimination of imaginaries interpret an algebraically closed field?

Partial Answer

Infinite language: No! Verbovskiy [Ver06]

Inite language:

- Yes! for constructions of [Hru93, BP21].
- A program for other flat geometries

- ∃ →

Groups, definable closure, and elimination of imaginaries

This section is about arbitrary strongly minimal theories not just Hrushovski constructions.

< ロ > < 同 > < 三 > < 三

T^{eq} and elimination of imaginaries

Definition

- M^{eq}: Add a sort U_E for each definable over Ø equivalence relation E on Mⁿ for each n and a map from Mⁿ to U_E taking a to a/E. The a/E are dubbed 'imaginary'.
- 2 A theory *T* admits *elimination of imaginaries* if $M \models T$ implies for every formula $\varphi(\overline{x}, \overline{y})$ and $\overline{a} \in M^n$ there exists $\overline{b} \in M^m$ such that for every automorphism $f \in \operatorname{aut}(M)$, *f* fixes **b** iff *f* fixes $\varphi(M, \overline{a})$.
- 3 A theory *T* admits weak elimination of imaginaries iff for every formula $\phi(\overline{x}, \overline{a})$ there exists a formula $\psi(\overline{x}, \overline{y})$ such that there are only finitely many parameters $\overline{b}_1, \ldots, \overline{b}_n$ such that each of $\psi(\overline{x}, \overline{b}_1), \ldots, \psi(\overline{x}, \overline{b}_n)$ is equivalent to $\phi(\overline{x}, \overline{a})$.

Fact: Elimination of imaginaries

A theory *T* admits *elimination of imaginaries* if its models are closed under definable quotients. ACF: yes; locally modular: no

Finite Coding

Definition

A finite set $F = \{\overline{a}_1, \dots, \overline{a}_k\}$ of tuples from M is said to be coded by $S = \{s_1, \dots, s_n\} \subset M$ over A if

 $\sigma(F) = F \Leftrightarrow \sigma | S = id_S \text{ for any } \sigma \in aut(M/A).$

We say T = Th(M) has the finite set property if every finite set of tuples F is coded by some set S over \emptyset .

・ 同 ト ・ ヨ ト ・ ヨ

(weak) elimination of imaginaries and finite coding

Fact

If T admits weak elimination of imaginaries then T satisfies the finite set property if and only T admits elimination of imaginaries.

Since every strongly minimal theory with $acl(\emptyset)$ infinite has weak elimination of imaginaries, [Pil99], we have

A strongly minimal T with infinite $acl(\emptyset)$ admits elimination of imaginaries iff it has finite coding.

Group Action and Definable Closure

Fix *I*, a finite set of independent points in the model $M \models T$.

2 groups

Let $G_{\{I\}}$ be the set of automorphisms of *M* that fix *I* setwise and G_I be the set of automorphisms of *M* that fix *I* pointwise.

Definition

- $dcl^*(I)$ consists of those elements that are fixed by G_I but not by G_X for any $X \subsetneq I$.
- 2 The symmetric definable closure of *I*, sdcl*(I), consists of those elements that are fixed by *G*_{*I*} but not by *G*_{{*X*}} for any *X* ⊆ *I*.

 $sdcl^*(I) = \emptyset$ implies *T* does not admit elimination of imaginaries. $sdcl^*(I) \subseteq dcl^*(I) \subseteq dcl(I)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

'Non-trivial definable functions'

Definition

Let *T* be a strongly minimal theory. A function $f(x_0 \dots x_{n-1})$ is called *essentially unary* if there is an \emptyset -definable function g(u) such that for some *i*, for all but a finite number of $c \in M$, and all but a set of Morley rank < n of tuples $\mathbf{b} \in M^n$, $f(b_0 \dots b_{i-1}, c, b_i \dots b_{n-1}) = g(c)$.

Lemma

For a strongly minimal T the following conditions are equivalent:

- for any n > 1 and any independent set $I = \{a_1, a_2, \dots, a_n\}$, $dcl^*(I) = \emptyset$;
- 2 every \emptyset -definable *n*-ary function (n > 0) is essentially unary;
- **③** for each *n* > 1 there is no \emptyset -definable truly *n*-ary function in any *M* ⊨ *T*.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definable closure, finite coding, elimination of imaginaries

Lemma

Let $I = \{a_0, a_1\}$ be an independent set with $I \le M$ and M is a generic model of a strongly minimal theory.

- If $sdcl^*(I) = \emptyset$ then I is not finitely coded.
- If dcl*(I) = Ø then I is not finitely coded and there is no parameter free definable binary function.

The Hrushovski Construction

æ.

・ロト ・回 ト ・ヨト ・ヨ

The diversity of flat strongly minimal sets

The 'Hrushovski construction' actually has 5 parameters:

Describing Hrushovski constructions

- σ : vocabulary
- 2 L₀: A univerally axiomatized collection of finite *σ*-structures. (But generalizing to ∀∃ is useful.)
- **③** ϵ : A submodular (hence flat) function from L_0^* to \mathbb{Z} .
- $L_0: L_0^*$ defined using ϵ .
- *μ*: a function bounding the number of 0-primitive extensions of an
 A ∈ *L*₀ are in *L*_μ.

To organize the classification of the theories each choice of a class **U** of μ yields a collection of T_{μ} with similar properties.

・ 同 ト ・ ヨ ト ・ ヨ ト

Flatness

Definition

Flat pregeometries

- Suppose (A, cl) is a pregeometry on a structure *M* with dimension function *d* and *F*₁,..., *F_s* are a sequence finite-dimensional *d*-closed subsets of *A*.
 For *T* ⊆ {1,...*s*} let *F_T* = ⋃_{*i*∈*T*} *F_i* and *F_∅* = ⋃_{1≤*i*≤*s*} *F_i*.
 Then (*A*, cl) is *flat* if *d*(*F_∅*) is ≤ the value computed by the include-exclude principal applied to the *F_S*.
- ② (A, cl) is strictly flat if it is flat but not distintegrated $(acl(ab) \neq acl(a) \cup acl(b)).$

In Hrushovski construction flatness for the *d*-geometry and algebraic closure are equivalent.

-

・ 同 ト ・ ヨ ト ・ ヨ ト …

The main result: Classifying dcl [BV22]

Theorem

Let T_{μ} be a strongly minimal theory as in Hrushovski's original paper. I.e. $\mu \in \mathcal{U} = \{\mu : \mu(A/B) \ge \delta(B)\}$). Let $I = \{a_1, \ldots, a_v\}$ be a tuple of independent points with $v \ge 2$.

 G_I If T_μ triples

$$\mathcal{U} \supseteq \mathcal{T} = \{\mu : \mu(\mathbf{A}/\mathbf{B}) \ge \mathbf{3}\}$$

then $dcl^*(I) = \emptyset$, $dcl(I) = \bigcup_{a \in I} dcl(a)$, and every definable function is essentially unary (Definition 10).

$$\begin{array}{l} G_{\{l\}} & \text{In any case } \mathrm{sdcl}^*(\mathrm{I}) = \emptyset \\ & \mathrm{sdcl}(\mathrm{I}) = \bigcup_{a \in \mathrm{I}} \mathrm{sdcl}(a) \end{array}$$

and there are no \emptyset -definable symmetric (value does not depend on order of the arguments) truly *v*-ary function.

In both cases T_{μ} does not admit elimination of imaginaries and the algebraic closure geometry is not disintegrated.

Amalgamation and Generic model

We study classes K_0 of finite structures Awith $\delta(A') \ge 0$, for every $A' \subset A$. basic example: one ternary relations $\delta(A) = |A| - \#$ (realizations of R. $d_M(A/B) = \min\{\delta(A'/B) : A \subseteq A' \subset M\}.$

 $A \leq M$ if $\delta(A) = d(A)$.

When (\mathbf{K}_0, \leq) has joint embedding and amalgamation there is unique countable generic.

Primitive Extensions and Good Pairs

Definition

- Let $A, B, C \in \mathbf{K}_0$.
- **(D**) C is a 0-primitive extension of A if C is minimal with $\delta(C/A) = 0$.

② C is good over $B \subseteq A$ if B is minimal contained in A such that C is a 0-primitive extension of B. We call such a B a base.

α is the isomorphism type of ({*a*, *b*}, {*c*}),

Overview of construction

Realization of good pairs

- A good pair C/B well-placed by A in a model M, if $B \subseteq A \leq M$ and C is 0-primitive over X.
- 2 For any good pair (C/B), $\chi_M(B, C)$ is the maximal number of disjoint copies of *C* over *B* appearing in *M*.
- So For $\mu \in \mathcal{U}$, K_{μ} is the collection of $M \in K_0$ such that $\chi_M(A, B) \le \mu(A, B)$ for every good pair (A, B).

Adequacy Condition

For every good pair A/B, $\mu(A/B) \ge \delta(B)$. Guarantees amalgamation (and more!) If C/B is well-placed by $A \le M$, $\chi_M(B, C) = \mu(B/C)$

< 同 > < 三 > < 三 >

The structure of acl(X)

æ

< ロ > < 回 > < 回 > < 回 > < 回</p>

G-decomposable sets

Definition $\mathcal{A} \subseteq M$ is G-decomposable if $\bigcirc \mathcal{A} \leq M$ $\bigcirc \mathcal{A}$ is G-invariant $\bigcirc \mathcal{A} \subset_{<\omega} \operatorname{acl}(I).$

Fact

There are *G*-decomposable sets. Namely for any finite *U* with d(U/I) = 0,

 $\mathcal{A} = icl(I \cup G(U))$

3 > < 3

< 🗇 🕨

Linear Decomposition

< A >

Constructing a G-tree-decomposition I

 $\mathfrak{A}_0 = \mathrm{icl}(I)$ so has dimension 2.

・ 同 ト ・ ヨ ト ・ ヨ

A non-trivial definable binary function

In the diagrams, we represent a triple satisfying R by a triangle.

Constructing a G- tree-decomposition II

FIGURE 11. From a linear to a tree-decomposition: One Step

э

Proof idea

Suppose $I \subset \mathfrak{A} \leq M$ and (A/B) is well-placed by $D \subseteq \mathfrak{A}$. Fix a *G*-normal $A \leq M \models \hat{T}_{\mu}$ with height m_0 .

- There are at least two copies of A over A. Then no element of A is in dcl(I).
- **2** Lemma Assume that \hat{T}_{μ} triples. For $m \geq 1$,
 - Image dim_m: d(E) ≥ 2 for any G_l-invariant set E ⊆ A^m, which is not a subset of A⁰.
 - 2 moves_{*m*}: No $A_{f,k}^m$ is G_l -invariant.

This Lemma is proved by induction on m_0 .

Observation

- None of these examples are pseudo-finite: $M \models \phi$ implies ϕ has a finite model.
- This follows from a theorem of Pillay that any strongly minimal pseudo-finite theory is locally modular.

マロト イラト イラ

Conclusion

Strongly minimal theories with non-locally modular algebraic closure

- Diversity
 - **1** 2^{\aleph_0} theories of strongly minimal Steiner systems (*M*, *R*) with no Ø-definable binary function
 - 2 $\mathbb{2}^{\aleph_0}$ theories of strongly minimal quasigroups (M, R, *) + an example of Hrushovski
 - Non-Desarguesian projective planes definably coordinatized by strongly minimal ternary fields [Bal95]
 - 2-ample but not 3-ample sm sets (not flat) [MT19]
 - strongly minimal eliminates imaginaries (flat) INFINITE vocabulary) (Verbovskiv)
 - 6 field-like

Conclusion

Strongly minimal theories with non-locally modular algebraic closure

- 2^{ℵ₀} theories of strongly minimal Steiner systems (*M*, *R*) with no Ø-definable binary function
- ② 2^{\aleph_0} theories of strongly minimal quasigroups (*M*, *R*, ∗) + an example of Hrushovski
- Non-Desarguesian projective planes definably coordinatized by strongly minimal ternary fields [Bal95]
- 2-ample but not 3-ample sm sets (not flat) [MT19]
- strongly minimal eliminates imaginaries (flat) INFINITE vocabulary) (Verbovskiy)
- field-like
- Classifying sm sets with flat geometry
 - discrete
 - 2 non-trivial but no binary function
 - on-trivial but no commutative binary function
 - On-Desarguesian proj-planes definably coord by ternary fields

Further Problems

æ.

<ロ> <同> <同> <同> < 同> < 同>

Main Conjecture

Take the class L_0 to be all finite τ -structures that satisfy the hereditarily positive ϵ dimension discussed above and the adequacy condition on μ .

Conjecture: If there is a natural number *N*, such that $\mu(A/B) \ge \delta(B)$ for any good pair (A/B) with $\delta(B) \ge N$; then $\operatorname{sdcl}^*(I) = \emptyset$ for any independent set *I* with $|I| \ge \max\{N, 5\}$.

It then follows no Hrushovski construction in a finite relational vocabulary τ (that is, where K_0 contains all finite τ -structures) has elimination of imaginaries.

프 () () () (

More general issues

- Does any SM set with flat geometry admit elimination of imaginaries?
 Note these include the quasi-groups and ternary fields discussed above.
- 2 [Eva11] Are Hrushovski's strongly minimal structures in [Hru93] reducts of trivial theories? Evans shows the ω -stable versions are.

References I

John T. Baldwin.

Some projective planes of Lenz Barlotti class I. *Proceedings of the A.M.S.*, 123:251–256, 1995.

- John T. Baldwin and G. Paolini. Strongly Minimal Steiner Systems I. Journal of Symbolic Logic, 86:1486–1507, 2021. published online Oct 22, 2020 arXiv:1903.03541.
- John T. Baldwin and V. Verbovskiy. Towards a finer classification of strongly minimal sets. submitted: 58 pages, Math Arxiv:2106.15567, 2022.

References II

D Evans.

An introduction to ampleness.

talks given at British Postgraduate Model Theory Conference, Oxford, January 2015; http:

//wwwf.imperial.ac.uk/~dmevans/OxfordPGMT.pdf, 2011

E. Hrushovski.

A new strongly minimal set.

Annals of Pure and Applied Logic, 62:147–166, 1993.

I. Muller and K. Tent.

Building-like geometries of finite morley rank.

J. Eur. Math. Soc., 21:3739–3757, 2019. DOI: 10 4171/JEMS/912

References III

Anand Pillay. Model theory of algebraically closed fields.

In E. Bouscaren, editor, *Model Theory and Algebraic Geometry : An Introduction to E. Hrushovski's Proof of the Geometric Mordell-Lang Conjecture*, pages 61–834. Springer-Verlag, 1999.

V. Verbovskiy.

On the elimination of imaginaries for the strongly minimal sets of Hrushovski.

In M.M.Erimbetov, editor, *Model Theory in Kazakhstan*, pages 41–55. Eco Study, Almaty, 2006.