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Introduction

The announcement® for a conference on Philosophy and Model Theory in 2010
began:

Model theory seems to have reached its zenith in the sixties and
the seventies, when it was seen by many as virtually identical
to mathematical logic. The works of Gédel and Cohen on the
continuum hypothesis, though falling only indirectly within the
domain of model theory, did bring to it some reflected glory.
The works of Montague or Putnam bear witness to the profound
impact of model theory, both on analytical philosophy and on
the foundations of scientific linguistics.

My astonished reply to the organizers® began:

It seems that I have a very different notion of the history of
model theory. As the paper at [Bal10] points out, I would say
that modern model theory begins around 1970 and the most pro-
found mathematical results including applications in many other
areas of mathematics have occurred since then, using various as-
pects of Shelah’s paradigm shift. T must agree that, while in my
view, there are significant philosophical implications of the new
paradigm, they have not been conveyed to philosophers.

This book is an extended version of that reply to what we will call the provoca-
tion®. T hope to convince the reader that the more technically sophisticated model
theory of the last half century introduces new philosophical insights about math-
ematical practice® that reveal how this recent model theory resonates philosophi-
cally, impacting in particular such basic notions as syntax and semantics®, structure,
completeness, categoricity, and axiomatization. Thus, large sections of the book are
devoted to introducing and describing for those not familiar with model theory such
topics as the stability theoretic classification of first order theories (a generalization
of vector space independence that gives a new notion of invariants of structures,

IThis delightful Paris conference was organized by Brice Halimi, Jean-
Michel Salanskis, and Denis Bonnay. The full announcement is here. http:
//dep-philo.u-paris10.fr/dpt-ufr-phillia-philosophie/la-recherche/les-colloques/
philosophy-and-model-theory-314434.kjsp

2Letter to Halimi, September 20, 2009.

3The announcement contains a number of astute observations that we will comment on in
due course.

4See page xii.

5We use semantics for ‘semantics of formal language’ (page 209). Among the accomplishments
of model theory alluded to in the provocation are contributions to the philosophy of language as
in [BW16]; our topic here is the philosophy of mathematics.

ix
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X INTRODUCTION

which applies to various mathematical topics) and the discovery that these abstract
properties imply the interpretability of classical groups (page 15) into apparently
unrelated contexts. Much of this exposition will be in the context of discussing
the paradigm shift®. In short, the paradigm around 1950 concerned the study of
logics; the principal results were completeness, compactness, interpolation and joint
consistency theorems. Various semantic properties of theories were given syntactic
characterizations but there was no notion of partitioning all theories by a family of
properties. After the paradigm shift there is a systematic search for a finite set of
syntactic conditions which divide first order theories into disjoint classes such that
models of different theories in the same class have similar mathematical properties.
After the shift one can compare different areas of mathematics by checking where
theories formalizing them lie in the classification.

Framework for formalization. We always speak of formalizing a particular
mathematical topic. A formalization of a mathematical area specifies a vocabulary
(representing the primitive notions of the area), a logic, and the axioms (postulates
in the technical sense of Euclid) for the particular topic.

By a topic we might mean group theory or algebraic geometry, or perhaps set
theory. We argue that comparing (usually first order) formalizations of different
mathematical topics is a better tool for investigating the connections between their
methods and results than a common coding of them into set theory. Avoiding
a global foundation allows us to evade the Godel phenomena and study instead
different ‘tame” areas of mathematics: e.g. any stable or o-minimal theory, real
algebraic geometry, differentially closed fields etc. In Chapter 1 we elaborate on
this notion of formalization and explain the importance of each of the choices:
vocabulary, logic, and axioms.

We develop some uses of first order formalization in studying the organization
of mathematical practice, some consequences of this new organization for tradi-
tional mathematics, and explore how the analysis of formalization here affects some
standard topics in the philosophy of mathematics. This book supports four main
theses.

Theses

(1) Contemporary model theory makes formalization of specific mathematical
areas a powerful tool to investigate both mathematical problems and is-
sues in the philosophy of mathematics (e.g. methodology, axiomatization,
purity, categoricity and completeness).

6See further detail on page xiv. While I invoke Kuhn’s term, I don’t want to take on all of
its connotations. My meaning is attuned with Harris (page 23 of [Har15]) “I soon found myself
caught up in the thrill of the first encounter between two research programs, each of a scope and
precision that would have been inconceivable to previous generations, each based on radically
new heuristics, each experienced by my teachers’ generation as a paradigm shift.”. He later gives
Weil, Grothendieck, and Langlands as examples of creators of paradigm shifts. The authors in
the collection, Revolutions in Mathematics [GilO8a], generally argue that a tenable notion of
revolution in mathematics must be much more restrictive than Kuhn’s.

"Model theorists loosely call a theory tame if it does not exhibit the Gédel phenomena —
self-reference, undecidability, pairing function. One source of the word is Grothendieck’s notion
of ‘tame topology’. See Chapter 5.6 for Wilkie’s explanation and [Tei97] and [dD99].

{paradigm shift}



INTRODUCTION xi

(2) Contemporary model theory enables systematic comparison of local for-
malizations for distinct mathematical areas in order to organize and do
mathematics, and to analyze mathematical practice.

(3) The choice of vocabulary and logic appropriate to the particular topic
are central to the success of a formalization. The technical developments
of first order logic have been more important in other areas of modern
mathematics than such developments for other logics.

(4) The study of geometry is not only the source of the idea of axiomatization
and many of the fundamental concepts of model theory, but geometry itself
plays a fundamental role in analyzing the models of tame theories.

At first glance the first thesis may seem banal. Isn’t this just the justification for the
study of symbolic logic? Isn’t this claim just a rehash of positivistic themes of the
30’s? Not at all. The examples illustrating the first aspect of Thesis 1, mathematical
problems, concern specific® mathematical topics and we address them using modern
model theoretic techniques (e.g. Chapter 5.6 and Theorem 9.3.3). For the second
aspect one might ask, “‘What is the philosophy of mathematics?” Avigad [Avi07]
answers as follows, ‘Traditionally, the two central questions for the philosophy of
mathematics are: What are mathematical objects? How do we (or can we) have
knowledge of them?’ The traditional ontological issues are not in the scope of this
book. Rather we address the second question by studying epistemological issues
concerning the organization and understanding of mathematics as it is practiced.
By a local foundation for a mathematical topic, we mean a specification of the area
by a set of axioms. Hilbert in the Grundlagen and Bourbaki use informal axioms.
A key goal® of this book is to show the mathematical advantages of stating these
axioms in (usually first order) formal logic.

We consider reliability and clarity to be complementary objectives in the epis-
temology of mathematics. With Manders [Man87], we see clarity as at least as
an important an issue as reliability'®. Thus, we examine how the understanding
of mathematical concepts changes (say the notion of number for the Greeks or for
us now), and how formalization forces a clarifying analysis of concepts. For exam-
ple, the first order axiomatization of geometry (Chapter 8-9 provides much finer
information than the second order axiomatization.

One might incorrectly suspect the book is a defense of the ‘formalism’ leg of
the foundational triumvirate. Rather, we deal with ‘formalization’ as a scheme
for organizing mathematics without addressing any of the ontological concerns of
‘formalists’.

The second thesis addresses the deep interactions between model theory and
traditional mathematics. We describe how the new paradigm, by focusing attention
on the content of particular fields rather than on a reduction to a global theory of
all mathematics, provides connections across fields of mathematics that leads to
mathematical advances (Chapter 5.6). This fact is base data for the study of math-
ematical practice. Thus the epistemological focus extends from reliability to more
general concerns of clarity and coherence. Owur approach is aligned with those

8We indicate similarities and distinctions from the original foundational project on page xiv.

9The details of formalization are laid out in Chapter chform. In that chapter we consider the
preformal mathematics as a set of concepts; in Chapter 8 we take Detlefsen’s view of a dataset of
accepted propositions. Our view certainly fits within the notion of the hypothetical conception of
mathematics described in [FGO8].

10We elaborate this discussion on page xviii.
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grouped as philosophy of mathematical practice on the web page of the APMP':
‘Such approaches include the study of a wide variety of issues concerned with the
way mathematics is done, evaluated, and applied, and in addition, or in connection
therewith, with historical episodes or traditions, applications, educational problems,
cognitive questions, etc.” These approaches are exemplified, though in many differ-
ent ways, by such authors as Arana, Ehrlich, Hallett, McLarty, Maddy, Mancosu,
Manders, Schlimm and Tappenden.

This movement'? is more fully described in the introduction to The Philosophy
of Mathematical Practice [Man08b| in which Mancosu makes the philosophical
aims more precise. He notes that Benaceraff’s ‘rightly influential’ articles set the
guiding question as ‘how, if there are abstract objects, could we have access to
them’. Then he goes on to describe the positive goals of his book.

The authors in this collection ... believe that the epistemology
of mathematics has to be extended well beyond its present con-
fines to address epistemological issues that have to do with fruit-
fulness, evidence, visualization, diagrammatic reasoning, under-
standing, explanation, which are orthogonal to the problem of
access to ‘abstract objects’3.

In this spirit the goal in this book is to study not just the logical foundations
of mathematics, but to understand the role of logic in contemporary mathemat-
ics. This discussion invokes not only some existing philosophical literature, but
programmatic pronouncements by such authors as Bourbaki, Hilbert, Hrushovski,
Kazhdan, Macintyre, Pillay, Shelah, Tarski, and Zilber that often have influenced,
if not determined, mathematical practice. We introduce Shelah’s methodological
command: ‘find dividing lines’ on the next page; it recurs often in the text when
illustrating the organization of model theory. In The Statesman, a dialog devoted
in part to analyzing ‘good definition’, Plato advises to ‘cut through the middle’.
In Chapter 12 we develop the analogy between this dictum of Plato and Shelah’s
principle of seeking ‘dividing lines’ to understand the relations among mathematical
theories.

The third thesis has several aspects. Both mathematical and philosophical
questions may have different answers depending on the choice of logic. Chapter 7
expounds the vast variation in the amount of entanglement with axiomatic set the-
ory among first, infinitary and second order logic. Metatheoretic investigation of
first order logic gives finer information than second order logic about categoricity,

1 Association for the Philosophy of Mathematical Practice. http://institucional.us.es/
apmp/index_about.htm

12The distinction between various approaches to the philosophy of mathematics is well known.
Various terms have been used to make the distinction. The side I refer to as ‘traditional philos-
ophy of mathematics’ is dubbed ‘philosophy of Mathematics’ (Harris, page 30 of [Har15]) or
‘Foundations of Mathematics’ (Simpson in clarifying his view on the Foundations of Mathematics
Listserve)). While what I call ‘philosophy of mathematical practice’ becomes ‘philosophy of math-
ematics’ (Harris) or ‘foundations of mathematics’ (Simpson) and philosophy of ‘real mathematics’
for Corfield [Cor03]. Unlike Corfield, as a mathematician and model theorist for 40 odd years I
regard model theory as ‘real mathematics’.

Bpage 1-2 of [Man08b]
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definability, and axiomatization. This finer information, particularly about defin-
ability, provides not only spectacular pure model theoretic results** but new tools
for the study of traditional mathematics.

Shapiro’s Foundations without Foundationalism: A case for second order logic
inspired the title of this work. He writes'®, ‘One of the main themes of this
[Shapiro’s] book is a thorough anti-foundationalism. ...The view under attack
is the thesis that there is a unique best foundation of mathematics and a concomi-
tant view that there is a unique best logic — one size fits all. We have gone to some
lengths to identify inadequacies of first order logic, and we have shown how sec-
ond order logic, with standard semantics, overcomes many of these shortcomings.’
Indicating his alternative on page 29, he quotes Skolem’s characterization of an
‘opportunistic’ view of foundations: to have a foundation which makes it possible
to develop present day mathematics, and which is consistent so far as known yet.
Shapiro proclaims, ‘We might say that it is foundations without foundationalism’.
So he still seeks reliability but without the high standard, maximally immune to
rational doubt, and reductionist nature of traditional programs.

Shapiro then lays out a positive argument for founding mathematics using
second order logic. He argues that basic analysis is comfortably axiomatized in
second order logic and that basic notions such as closure of a subgroup, well-order,
and infinite are all naturally defined in terms of second order logic. He identifies first
order logic as deficient because it is ‘subject to the compactness and Lowenheim
theorem’ (page 111).

The view here is somewhat orthogonal. Our position is not anti-foundationalist;
we just choose to study other issues. On the one hand, we agree that one should
study particular areas of mathematics rather than seeking a single foundation.
And we agree that normal informal mathematical reasoning would most easily be
formalized in second order logic. But in contrast to discussing the foundations of
arithmetic and analysis, our focus is on the role of formalization in solving problems
of modern mathematics. For us, compactness and categoricity in power for first
order logic are powerful tools for understanding mathematics, not a deficit.

We could restate the fourth thesis as: geometry is the missing link that must
be added to Bourbaki’s three ‘great mother-structures’ (group, order, topology).
(page 27) that are intended to organize mathematics. Geometry also unites what
might appear to be disparate facets of this book. In studying the axiomatization of
elementary geometry we highlight Hilbert’s use of only first order axioms to prove
a geometry admits a system of coordinates (as in high school geometry) over some
field. The crucial property of geometry — a clear concept of dimension — is distilled
in the notion of a combinatorial geometry'®. This general notion applies equally
well to finite as well as ‘continuous’ geometries. The stability classification of the-
ories allows one to determine those theories 7" whose models admit combinatorial
geometries. For those that do, it is possible to develop a structure theory for the
models of T', where the building blocks of the models are geometries. The methods
proving this result have many applications in traditional mathematics. Conversely,

MMuch of this book is devoted to explaining the mathematical, philosophical and method-
ological significance of the main gap theorem (Theorem 5.5.3). It established a dichotomy between
two kinds of theories; ones where the number of models in R, grows slowly with o and those where
the number of models is the most it could be for every a > 0. See page 29.

15page 220 of [Sha91]

165ce Chapter 5.4.
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Hrushovski’s field configuration, ultimately inspired by Hilbert’s proof of the ex-
istence of a field, constructs classical groups and geometries from general model
theoretic hypotheses with no algebraic or geometric hypotheses. Thus classical
mathematics and model theory are inextricably intertwined.

After explaining in the next few paragraphs what I mean by the paradigm
shift, T will try to clarify the purpose of this book by comparing approaches to the
methodology of mathematics articulated by Franks, Maddy, Manders, and Tarski.
Then I will move to a more detailed discussion of the contents of the book. I make
reference in this discussion to many concepts of model theory and some deep math-
ematics. Familiarity with at least an upper-division undergraduate logic course is
assumed. More advanced model theoretic notions are introduced, T hope gently, and
indexed. Some details in the introduction are intended for those with more back-
ground; but, they should become clearer by examining the treatment in the text.
There is little attempt to explain in any depth the concepts and results in other
areas of mathematics. I do attempt to give a broad picture to show interactions
both between areas and with model theory.

Features of the paradigm shift. The paradigm shift that swept model
theory in the 1970’s really occurred in two stages. During the first stage in the 1950’s
and 1960’s the focus switched from the study of properties of logics'” to the study

of particular (primarily first order) theories (the logical consequences of a set of

axioms) and properties of theories and their impact on the models of the theories'®.

Robinson’s identification of model complete theories is an early example of studying
a class of theories; another is Morley’s analysis of W;-categorical theories. The
Ax-Kochen-Ershov proof of the Lang conjecture proceeds by identifying complete
theories of Henselian valued fields®®.

T hus typical theorems involved such notions as decidability, interpolation; that is, asser-
tions true for any theory. See Chapter 1.3 and 7.1.

18 Contrast this study of particular fields (theories) with the goals enunciated by Russell in
the preface to [RW10]. ‘We have however avoided both controversy and general philosophy and
made our statements dogmatic in form. The justification for this is that the chief reason in favour
of any theory on the principles of mathematics must always be inductive, i.e., it must lie in the
fact that the theory in question enables us to deduce ordinary mathematics. In mathematics the
greatest degree of self-evidence is usually not to be found quite at the beginning but at some later
point; hence the early deductions, until they reach this point, give reasons rather for believing the
premisses because true consequences follow from them, than for believing the consequences because
they follow from the premises.” We agree with this analysis of the process of axiomatization. We
argue however that experience has shown that the formulation of such premises for the principles
of mathematics (in PM or from a contemporary perspective ZFC) stray too far from the actual
practice of mathematics to properly illuminate it. Thus we pass from global to local foundations.
In Chapter 3 we celebrate the success of second order axiomatization of certain canonical structures
that meet Russell’s criteria for a particular area of mathematics. Most of the text describes various
first order theories whose axiomatizations are based on the same principle. We analyze below the
limitations (for the case of Hilbert’s geometry) of the description closing this same paragraph of
Russell, ‘All that is affirmed is that the ideas and axioms with which we start are sufficient, not
that they are necessary. Our notion of ‘modest descriptive axiomatization (Chapter 8) provides
empirical criteria for describing overreach of an axiom set.

19Ax and Kochen won the 1967 American Mathematical Society Cole prize in number theory
for their solution of Lang’s conjecture that every polynomial of degree d with at least d? variables
has a solution in the field of formal power series over the field with p elements. Ershov obtained
the result independently in the Soviet Union.
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In the second stage, Shelah’s decisive step was to move from merely identify-
ing some fruitful properties (e.g. complete, model complete, Ni-categorical) that
might hold of a theory to a systematic classification of theories. As described in
Chapter 5.3, he divides complete first order theories into four categories, each char-
acterized by a syntactic property. The aim is to determine the class of theories
whose models have a structure theory in a precise sense: each model is determined
by a system of cardinal invariants. Shelah introduces the methodological precept
of a ‘dividing line’ (Chapters 7.4, 12, and 2.4). He formulates each dividing line
property so that theories that fall on one side (e.g. unstable) are creative; their
models cannot be systematically analyzed as composed of small models, essentially
new models are increased as the cardinality increases, and there are the maximal
number of models. Models of theories on the other side (stable) have a ‘structure
theory’ (i.e. they admit a local dimension theory). In the classifiable®® case, each
model is determined by a (well-founded) tree of cardinal invariants. This book
investigates some consequences for mathematics and philosophy of mathematics of
that paradigm change from: study the properties of logics (compactness, interpola-
tion theorems, etc.) to: study virtuous properties of theories. A property of theory
T is virtuous (Chapter 2.3) if it impacts the understanding of the models of T'. A
property is a ‘dividing line’ if both it and its complement are virtuous.

While the stability classification provides precise mathematically formulated
dividing lines, ‘tame vs. wild’ is a less formal notion. The first order theory
of arithmetic, Th(N,+,-), was originally seen to be wild not only because it is
essentially undecidable but because it admits a pairing function and so loses the
essential geometric distinction between a structure A and the ‘plane over it’, A%
thus there can be no notion of dimension. And so, there is no geometry on (N, 4, ).
Since humans can only comprehend a small number of alterations of quantifiers, the
existence of definable sets of arbitrary quantifier rank prevents a clear intuition?!
of the structure (N, +, cdot). Shelah’s taxonomy further shows that arithmetic has
both of the strongest non-structure properties (the strict order property and the
independence property??). Together these conditions help to explain why little of
modern algebraic number theory takes place directly in first order Peano arithmetic
(as opposed to logical analysis showing a particular result is provable in Peano).
Rather, auxiliary more tame structures such as algebraically closed or valued fields
provide the framework for proofs of number theoretic results?3.

207 theory is classifiable if it satisfies each of the three dividing lines superstable, NDOP,
NOTOP; see page 79 for these acronyms.

21By intuition, I mean the usual usage of mathematicians, a rough understanding of a concept
or mathematical object and not any of the technical philosophical meanings. My intent is in the
spirit of the first page of the Grundlagen [Hil71] where Hilbert writes, ‘This problem [axiomatizing
geometry] is tantamount to the logical analysis of our intuition of space’. Shapiro (page 39 of
[Sha91] suggests ‘tentative preformal beliefs’. Although one often thinks of the natural numbers
as a clearly given structure, this assertion rests on a confusion. As Roman Kossak has pointed
out, a clear intuition or vision of the natural numbers with successor is often confused with a clear
intuition of arithmetic, the natural numbers with both addition and multiplication; few, if any,
actually have the second intuition. See Chapter 1.2 for the role of the vocabulary and page 37 for
further development of ‘intuition of a structure.

22These are syntactical conditions, which each imply the maximal number of models in each
power; technical definitions are on page 78.

23The epistemological significance of such a reduction is explored in [Man87].

{vocabintuit}
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We will explore the origins in the 1950’s of this shift, its fruition in the 1970’s,
and the more mature pattern that developed in the 1980’s. We consider some
consequences of modern model theory for mathematics and for the philosophy of
mathematics. Consequences for the latter arise in two ways: using the insights of
modern model theory to develop existing research lines in philosophy (purity, cat-
egoricity, etc.); initiating the study of issues (e.g. the exceptional nature of Xy, the
role of model theory in organizing mathematics) in the philosophy of mathematics
that are first seen from this new perspective. These issues all contribute to the
emerging study of the philosophy of mathematical practice (e.g. [Man08al).

The context of this work. Why should this change of mathematical goal
from studying logics to studying the classification of theories have any impact on
the study of the philosophy of mathematics? In contrast to the traditional program
that studies the Foundations of Mathematics by constructing a single formal theory
supporting all of mathematics, this shift empowers a strategy of defining many
different formal theories to describe particular areas of mathematics.

Tarski’s phrase, the methodology of deductive systems, is at the heart of the
discussion. We proceed less ambitiously than Tarski,?* whose Introduction to Logic
and the Methodology of the Deductive Sciences, aimed

to present to the educated layman . . . that powerful trend . .. modern
logic ... [which] seeks to create a common basis for the whole hu-
man knowledge.

Thus, unlike the analytic philosophy of the 1930’s or even the work of Putnam
and Montague mentioned in the provocation, there is no claim that the methods
considered here are broadly applicable to the foundations of science. Rather than
the broad program espoused by Tarski, our more modest goal is to expound for
philosophers and mathematicians how the formal methods, initially springing from
Tarski, Robinson, and Malcev but greatly extended in the wake of the paradigm
shift, enhance the pursuit and organization of mathematics and the ability to ad-
dress certain philosophical issues in mathematics.

Our approach is closer to that of two works: Maddy’s Second Philosophy: A
Naturalistic method [Mad07] and Defending the Axioms citeMaddydef. In the
latter, she analyzes the methodology and the justification of the axioms of one
particular first order theory, set theory. To see the analogy with the current book,
we modify her?® Second Philosopher’s account of issues?® arising in the study of set

{maddy2phil} theory, replacing each occurrence of ‘set’ in Maddy’s text by ‘model’.

When our Second Philosopher is confronted with contemporary
model theory, we've seen that questions of two types arise. The
first group is methodological: What are the proper grounds on
which to introduce models, to justify model -theoretic practice,
to adopt model-theoretic axioms? The second group is more
traditionally philosophical: what sort of activity is model theory?
how does model-theoretic language function? what are models
and how do we come to know about them?

24page xi of [Tar65].

251 [Mad07], Maddy begins to describe the method of inquiry of a second philosopher; by
distinguishing it from the Cartesian method.

265¢e page 41 of Defending the Azioms [Mad11].
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Some of these questions resonate immediately in their new context. Our discus-
sion of formalization?” in Chapter 1 considers the grounds for introducing models.
On the other hand, we are not trying to formalize model theory, so the explicit
question ‘What are the proper grounds to adopt model-theoretic axioms?’ is not
in view. We seek rather to analyze the fundamental techniques and principles of
model theory. Indeed, one might wonder whether a potential formalization is re-
motely possible. The ‘grounds for adopting axioms’ question raised by Maddy is
one level too abstract for our study of model theory. Finding grounds for accept-
ing the axioms is a task for a model theorist in formalizing any particular theory,
including set theory, not about the field of model theory itself. As the provocation
indicated, thinking of set theory in the same way as any other first order theory
has proved its worth as a methodological standpoint in the last 50 years?®. For
us, the issue of intrinsic and extrinsic justification for axioms, a central concern for
Maddy [Mad11], arises for any field of mathematics, from Euclid /Hilbert geometry
(Chapter 8) to Hrushovski’s contemporary theory of algebraically closed fields with
an automorphism (Chapter 2.4).

The specific questions Maddy labels as ‘traditionally philosophical’ in the quo-
tation at hand are among those this book intends to address. Much of the book
describes ‘the activity of model theory’ and tries to explicate some of the directions
of research. Thus, by model theory we almost always?? refer to the study of the
interaction between a collection of sentences in a formal language®® and structures
that satisfy those sentences. Much of our analysis concerns the function of model
theoretic language. In seeking to understand how we come to know about models,
we will study their properties and their relation with theories and classes of theo-
ries. While we focus on first order theories, the properties of models will be second
order: e.g. prime, saturated, and universal.

Much of [Mad11] discusses the relation between various forms of realism and
the choice of axioms for set theory. Our direction here is more in line with page
359 of [MadO07]:

In sum, then, the Second Philosopher sees fit to adjudicate the
methodological questions of mathematics — what makes for a
good definition, an acceptable axiom, a dependable proof tech-
nique — by assessing the effectiveness of the method at issue
as means towards the goal of the particular stretch of mathe-
matics involved. Straightforward examination of the historical
record suggests that theories about the nature of mathematical
existence and truth don’t play an instrumental role in these de-
terminations, but this is not to say that such metaphysical ques-
tions evaporate completely from the second-philosophical point
of view.

Here are some pertinent examples of methodological issues: Shelah’s program of
setting ‘dividing lines’ as normative assertions about the notion of ‘good definition’
(Chapter 12); the appropriate axioms for geometry (Chapter 8); and the nature of

273ee page 5.

283ee [She99| for Shelah’s pragmatic approach to the choice of axioms for set theory.

29(Jhapter 13 allows more generality.

30Thus a ‘formal theory’, abbreviated in context to theory’ reflects a mathematical theory
in the usual informal sense such as field theory or matrix theory.

Maddymethod
ym
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proof techniques in model theory (Chapter 4, 5 and 7). Two further methodological
schemes are the role of test questions (Chapter 12) and the use of strong hypotheses
(e.g. extensions of set theory) to obtain conclusions that one hopes to later estab-
lish with weaker hypotheses (Chapter 7.6). Thus our approach falls between those
of Tarski and Maddy. Our scope is much narrower than Tarski’s logic of deductive
systems but also wider (from one standpoint) than Maddy’s. The aim of Maddy’s
Defending the Azioms is to justify one first order theory for all of mathematics; in
contrast, we are trying to understand what the goals of justification should be for
different theories of various areas of mathematics. We approach global mathemati-
cal issues not by seeking a common foundation but by finding common themes and
tools for various areas, not in terms of the topic studied, but in terms of common
combinatorial and geometrical features isolated by formalizations of each area.

Another inspiration for this work is Franks’ [FralOa] study of the Hilbert
program in The Autonomy of Mathematical Knowledge. In his introduction, Franks
strikes a chord that will resonate in the current book: ‘The first theme is that
questions about mathematics that arise in philosophical reflection—questions about
how and why its methods work—-might be best addressed mathematically.” But then
he continues:

The second theme arises out of the first. Once one sees mathe-
matics potentially providing its own foundations, one faces ques-
tions about the available ways for it to do so. The two most
poignant issues are how a formal theory should refer to itself
and how properties about a theory should be represented within
that theory.

Here we part company. Since I seek no global theory of mathematics, there
is no self-reference problem. Indeed, two key insights of modern model theory are
that i) large amounts of modern mathematics can be better understood by formal
systems which are tame (page x), so do not support self-reference, and ii) this
tameness is actually constitutive of the fertility®! of these theories in mathematical
practice.

As is common in model theory, we adopt a rather strong metatheory, ZFC32.
However, we are interested (Chapter 7.6) in the possibility of weakening or strength-
ening model theoretic results within the general framework of axiomatic set theory.
Such investigations can clarify the distinctions between making hypotheses about
a specific topic and postulating general combinatorial principles in set theory. We
do deny that the reduction of mathematics to set theory, designed for reliability
purposes, is adequate for the understanding of mathematical practice. This is not
to reject the question of justifying the ZFC axioms but to table it while discussing
the role of formalization in clarifying mathematical discourse. Even so, we return
to the reliability issues by noting in Remark 9.2.3 that Tarski’s autonomous foun-
dation for geometry is finitistically consistent so providing weaker meta-theory in
one case.

Ken Manders [Man87] clarifies the contrast between the traditional focus on
reliability and our focus on the clarity and interaction of mathematical concepts.

31That is, we show (Chapter 2.4, 5.6) how the fact of the tameness can be exploited to prove
mathematical theorems.
327crmelo-Fraenkel set theory with the axiom of choice.
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He outlines the distinction between the foundational®® and the model theoretic
approach. He begins colloquially® by stipulating that traditional epistemology
concerns the correctness of mathematical assertions taken as knowledge claims.

Is it all right?, traditional epistemology asks about knowledge
claims. All schools in “logical foundations of mathematics” share
this concern for reliability. But a long-term look at achievements
in mathematics shows that genuine mathematical accomplish-
ment consists primarily in making clear by using new concepts:
... Representations and methods from the reliability programs
are not always appropriate. We need to be able to emphasize
special features of a given mathematical area and its relation-
ships to others, rather than how it fits into an absolutely general
pattern. Model theoretic algebra works in just this way. A
model theoretic approach may be able to bring out the point of
algebraic methods in number theory and geometry.

Manders argues that a crucial aspect of mathematical progress is the intro-
duction of new concepts to clarify a particular area. We illustrate this insight in
various contexts, e.g., in our discussion of purity in Chapter 11. While in [Man87],
Manders discusses only model theoretic algebra, we argue that not only the stand-
point of model theoretic algebra (Chapter 4.4), but to an even greater degree the
standpoint of the ‘one model theory’ (Chapter 5.7) that was obtained by integrating
the methods of classification theory (Chapters 5.5 and 5.6) with model theoretic
algebra, clarifies and unifies concepts in various areas of mathematics by finding
unexpected similarities across fields of mathematics. Thus we don’t abandon the
epistemological enterprise but we focus on clarification rather than verification.
How does one shape mathematical theories to best represent the inherent logic of
the material? What similar patterns of reasoning or combinatorial features appear
in various areas of mathematics?

The book is arranged as a web as well as a narrative. That is, we try to ex-
pound the basics of various model theoretic notions in terms of their methodological
significance. A notion often has more than one such significance, so we have ex-
tensive cross-referencing in the text. A further goal is to attack the idea that after
the foundational crises of the early 20th century mathematicians stopped engag-
ing with philosophical issues. To that end, we frequently quote from expository
articles, International Congress of Mathematics talks, and other sources in which
mathematicians have laid out programs that not only raise specific mathematical
problems but proclaim norms for ‘good mathematics’ and fruitful directions for
research. We now summarize in more detail the contents of the book to fill out the
description we have just given of the overall goals.

This book is not a text in model theory®>. We do however sketch major ideas
and results of model theory to illustrate our Theses 1-4. The exposition is organized

33By this I mean a proposed global axiomatic system to include all (or almost all) of
mathematics.

34The italics in the quotation are mine, but the boldface is original.

35We give some basic definitions, state some milestone results and give a feel for the methods
involved in establishing them. But we rely on such expositions as the Stanford Encyclopedia of
Philosophy for basic notions, [Mar02] and [Hod87] for more technical concepts, and refer the
interested to advanced texts in stability theory for further details.
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around methodological and historical themes. Thus, Shelah’s theorem 11.2.13 of
[She78] reports nine equivalent definitions of a stable theory. These diverse state-
ments are methodologically crucial. One of the key points of his ‘dividing lines’
program (Chapter 12.3) is that equivalent versions of the same definition play en-
tirely different roles. We will in fact discuss three or four equivalents to stability —
in different sections of the book — (Theorem 7.2.4, Theorem 7.4.2, Chapter 2.4).

We now describe the three parts of the book and connect them with our general
theme.

1. Rethinking Categoricity. Michael Detlefsen raised a number of questions
about the role of categoricity. The attempt to answer these questions has shaped
a good portion of this book.

Question I3%: (A) Which view is the more plausible—that theo-
ries are the better the more nearly they are categorical, or that
theories are the better the more they give rise to significant non-
isomorphic interpretations?

(B) Is there a single answer to the preceding question? Or
is it rather the case that categoricity is a virtue in some theories
but not in others? If so, how do we tell these apart, and how to
we justify the claim that categoricity is or would be a virtue just
in the former?

Question II: Given that categoricity can rarely be achieved, are
there alternative conditions that are more widely achievable and
that give at least a substantial part of the benefit that categoric-
ity would? Can completeness be shown to be such a condition? If
so, can we give a relatively precise statement and demonstration
of the part of the value of categoricity that it preserves?

Further discussion revealed different understandings of some basic terminology.
Does categoricity mean ‘exactly one model’, full stop? Or does it mean exactly one
model in a given cardinal? Since Morley’s ground breaking categoricity theorem
37 the actual meaning among model theorists for the colloquial ‘categorical’, is
‘categorical in an uncountable cardinal’. In the usual first order model theoretic
situation, the one model interpretation is trivial (it means finite). Is a theory
automatically closed under (deductive/semantic) consequence? Is the topic ‘theory’
or ‘axiomatization’?. Detlefsen’s concerns were primarily about first or second
order axiomatizations to provide descriptive completeness®® for a particular area or
for all of mathematics. In contrast, model theorists consider primarily (complete)
first order theories. These different perspectives yield two roles for formalization
in mathematics: as a foundational tool and as a device in the mathematician’s
toolbox.

36Questi0n I was questions III.A and IT1.B in a 2008 letter. Question IT was question IV in
the Detlefsen letter. I thank Professor Detlefsen for permission to quote this correspondence.

37Morley’s theorem asserts that a first order theory is categorical in one uncountable cardinal
% (all models of that cardinality are isomorphic) if and only if it is categorical in all uncountable
powers. Morley received the Steele prize from the American Mathematical Society for the seminal
influence of this work.

38In [Det14], Detlefsen distinguishes between ‘descriptive completeness’ and ‘completeness

for truth’. We address this notion at length in Chapter 8.1.



