1. Let $f(x)=-x^{2}+2 x+1$.
(a) Write out $f(2), f(t)$, and $f(x+h)$.
(b) What do we call this kind of function? Without using a calculator, find the vertex.
(c) Plot the points $(x, f(x))$ for $x=-1,0,1,2$ and draw a sketch of the graph of $f(x)$.
(d) Find the slope of the line containing the points $((-1, f(-1)),(0, f(0)))$ and the slope of the line containing the points $(1, \mathrm{f}(1))$ and $(2, \mathrm{f}(2))$.
(e) Write a formula in terms of x for the slope of the line containing the vertex and the point $(\mathrm{x}, \mathrm{f}(\mathrm{x}))$.
2. Given two functions f and g, we define the composite function $f \circ g$ by $(f \circ g)(x)=f(g(x))$. Let $f(x)=\sqrt{x}, g(x)=x+3, h(x)=\sin (x)$.
(a) Let $f(x)=\sqrt{x}, g(x)=x+3$. Find the functions $f \circ g$ and $g \circ f$. Find $(f \circ g)(2)$ and $(g \circ f)(2)$
(b) Is function composition associative? That is, is it true or false in general that $(f \circ g) \circ h=f \circ(g \circ h) ?$
(c) A function $f(x)$ is called even if $f(-x)=f(x)$ for all x . What does that mean graphically?. If $f(x)$ is an even function, is it true that $f \circ g$ must be an even function? (As with any true/false question, if true, explain why, if false, give a counter-example).
3. Inverse functions:
(a) Define a function. Can you describe this in more than one way? How can you tell if a graph is a function?
(b) Given a function $f(x)$, define its inverse function. What conditions are needed for the inverse function to exist (i.e. to be a function)?
(c) Does the function x^{2} have a (global) inverse function? Can you restrict its domain so that it does? What about the function $\tan (x)$?
(d) Find the inverse functions of the following, and state the domain on which they are valid: $g(x)=2 x-4, h(x)=e^{x}, k(x)=2^{x}, j(x)=x^{3}$.
4. Are the following true? If so, show why using rules of logarithms and exponents. If not, give a counter example.
(a) $\log |a b|=\log |a|+\log |b|$
(b) $\ln |a-b|=\frac{\ln |a|}{\ln |b|}$
(c) $\ln (\sqrt{5})=\frac{\ln 5}{2}$
(d) $\log _{a} x=\log _{a}\left(b^{\log _{b} x}\right)$
