1. Suppose an object is moving in a straight line according to the formula $s(t)=5 t^{2}+7$. Here the time, t, is measured in seconds and the distance traveled, s, is measured in meters.
(a) Find the average velocity over the time period from $t=7$ to $t=8$. If you use this as an estimate for the instantaneous velocity at $t=7$, is it an over-estimate or under-estimate?
(b) Find the average velocity for the time period from $t=7$ to $t=7+h$, where h is a constant. (Your answer will be a function of h.)
(c) Simplify your expression from part b) so that there is no h in the denominator. Then plug in values $h= \pm 1, h= \pm 0.5$, and $h= \pm 0.1$. What is the physical meaning of the numbers you computed?
(d) What happens to your expression as h becomes very close to zero from both directions? What is the meaning of considering such values of h ?
(e) What is the instantaneous velocity of the object at time $t=7$? Make sure to state the correct units.
2. For the following graph of $f(x)$, find:
(a) $\lim _{x \rightarrow-5} f(x)$
(b) $\lim _{x \rightarrow-3} f(x)$
(c) $\lim _{x \rightarrow-2} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$
(e) $\lim _{x \rightarrow 1} f(x)$
(f) $\lim _{x \rightarrow 3} f(x)$
(g) $\lim _{x \rightarrow 4} f(x)$

3. For each of the four cases below, sketch a graph of some function that satisfies the stated condition.
(a) $\lim _{x \rightarrow 2} f(x)=3$ and $f(2)=4$
(b) $\lim _{x \rightarrow 4+} f(x)=5$ and $\lim _{x \rightarrow 4-} f(x)=7$
(c) $\lim _{x \rightarrow 0} f(x)$ does not exist and $|f(x)|<2$ for all x
(d) $\lim _{x \rightarrow 0} f(x)=f(0)+1$
