- 1. Suppose an object is moving in a straight line according to the formula $s(t) = 5t^2 + 7$. Here the time, t, is measured in seconds and the distance traveled, s, is measured in meters.
 - (a) Find the average velocity over the time period from t = 7 to t = 8. If you use this as an estimate for the instantaneous velocity at t = 7, is it an over-estimate or under-estimate?
 - (b) Find the average velocity for the time period from t = 7 to t = 7 + h, where h is a constant. (Your answer will be a function of h.)
 - (c) Simplify your expression from part b) so that there is no h in the denominator. Then plug in values $h = \pm 1$, $h = \pm 0.5$, and $h = \pm 0.1$. What is the physical meaning of the numbers you computed?
 - (d) What happens to your expression as h becomes very close to zero from both directions? What is the meaning of considering such values of h?
 - (e) What is the instantaneous velocity of the object at time t = 7? Make sure to state the correct units.
- 2. For the following graph of f(x), find:
 - (a) $\lim_{x \to -5} f(x)$
 - (b) $\lim_{x \to -3} f(x)$
 - (c) $\lim_{x \to -2} f(x)$
 - (d) $\lim_{x \to 0} f(x)$
 - (e) $\lim_{x \to 1} f(x)$
 - (f) $\lim_{x \to 3} f(x)$
 - (g) $\lim_{x \to 4} f(x)$

- 3. For each of the four cases below, sketch a graph of some function that satisfies the stated condition.
 - (a) $\lim_{x\to 2} f(x) = 3$ and f(2) = 4
 - (b) $\lim_{x\to 4+} f(x) = 5$ and $\lim_{x\to 4-} f(x) = 7$
 - (c) $\lim_{x\to 0} f(x)$ does not exist and |f(x)| < 2 for all x
 - (d) $\lim_{x\to 0} f(x) = f(0) + 1$