1. Last time we showed that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$. Use this fact to compute $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$ algebraically. (Hint: multiply by a clever form of 1).
2. Determine whether the following statements are true or false and give an explanation or counterexample. Assume a and L are finite numbers.
(a) If $\lim _{x \rightarrow a} f(x)=L$, then $f(a)=L$.
(b) If $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
(c) If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=L$, then $f(a)=g(a)$.
(d) The limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist if $g(a)=0$.
(e) If $\lim _{x \rightarrow 1^{+}} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 1^{+}} f(x)}$, it follows that $\lim _{x \rightarrow 1^{-}} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 1^{-}} f(x)}$.
3. Find examples of functions f and g satisfying the following:
(a) $\lim _{x \rightarrow c} g(x)=0$ but $\frac{f(x)}{g(x)}$ does not have a vertical asymptote at $x=c$.
(b) $\lim _{x \rightarrow c} f(x)=0$ and $\frac{f(x)}{g(x)}$ does have a vertical asymptote at $x=c$.
(c) $\lim _{x \rightarrow c} g(x) \neq 0$ and $\frac{f(x)}{g(x)}$ does have a vertical asymptote at $x=c$.
(d) $\lim _{x \rightarrow c} f(x)$ exists and is not zero and $\lim _{x \rightarrow c} g(x)=0$. Does the graph of $\frac{f(x)}{g(x)}$ have a vertical asymptote at $x=c$?
(e) $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists but neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exists.
4. Intro to limits at infinity:
(a) What is $\lim _{x \rightarrow \infty} \frac{1}{x}$?
(b) What is $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}$ where $n \geq 1$?
(c) Use the above facts and some algebra to evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{3}+3 x+1}{5 x^{3}-2 x^{2}+17 x-\pi}$. (Hint: rearrange that expression algebraically so that it is written in terms of things like $\left.\frac{1}{x^{n}}\right)$.
