1. Formal Finite Limits

Last time, we worked out the formal definition of an infinite limit. Here is the formal definition of a finite limit for a continuous function f(x).

Definition: $\lim_{x \to a} f(x) = L$ if for every small number $\epsilon > 0$ there is a δ (depending on ϵ) so that: if $|x - a| < \delta$, then $|f(x) - L| < \epsilon$.

- (a) Draw a picture to illustrate this definition. Be careful to keep track of which quantities belong on the x-axis and which belong on the y-axis. Rewrite the definition so that is phrased in terms of intervals instead of absolute values.
- (b) In the case where f(x) = mx + b (i.e. your function is a straight diagonal line), what is the relationship between ϵ and δ and the slope m?
- (c) Prove formally that $\lim_{x\to 2} 3x + 1 = 6$. (Just like last time, start with a scratch work section where you find what δ should be in terms of ϵ , and then write a careful proof.)
- (d) Prove formally that $\lim_{x\to 2} x^2 = 4$. (Now that f(x) is not a straight line, you are going to need to use the idea that limits are a local property. We don't care what is happening far away from x = 2, so you can restrict your proof to an interval around x = 2. How can you use that fact to help your algebra work out?)
- (e) Prove formally that $\lim_{x \to 5} \frac{1}{x} = \frac{1}{5}$
- (f) Read the "proof" on the back of this sheet, and explain what is wrong with it.
- 2. A function is said to be continuous at the point x_0 if
 - (A) $f(x_0)$ is defined
 - (B) $\lim_{x \to x_0} f(x)$ exists
 - (C) $\lim_{x \to x_0} f(x) = f(x_0)$
 - (a) Sketch a graph of a discontinuous function for each of the following:
 - i. condition (A) holds, but condition (B) does not
 - ii. condition (B) holds, but condition (A) does not
 - iii. conditions (A) and (B) both hold, but condition (C) does not
 - (b) Classify your examples as removable discontinuities, jump discontinuities, or asymptotes.
 - (c) Could you have drawn examples which would have been classified differently?