Spend 50 minutes doing the following problems. As always, show all your work and reasoning carefully.

1. Let $f(x)=x^{2}-3 x$.
(a) Use the definition of the derivative to find $f^{\prime}(x)$.
(b) Find an equation of the tangent line to the graph of $f(x)$ at the point $x=2$.
2. Find the derivative of each function. Do not simplify your answer.
(a) $\cos \left(\sin \left(x^{2}+3\right)\right)$
(b) $e^{2 x} \ln (\sqrt{x-1})$
(c) $\frac{x^{2}}{\csc (x)}$
3. Prove that the equation $3^{x}=x^{4}$ has at least one (real) solution.
4. Evaluate the following limits or state that they do not exist:
(a) $\lim _{x \rightarrow \infty} \frac{7 x^{5}+x^{4}+3}{3 x^{5}+5 x^{2}+x+e}$
(b) $\lim _{x \rightarrow \pi / 2} \frac{\sin (x)-x^{2}}{\cos (x)}$
(c) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$
5. Let $f(x)=\frac{(x-1)(x-2)(x-5)}{(x-1)(x-3)|x-5|}$.
(a) Find and classify all discontinuities of $f(x)$. (Hint: even if you know the answers from experience with rational functions, to get full credit you must show work that justifies them.)
(b) Does $f(x)$ have any horizontal asymptotes? If so, find them, and if not, explain why.
6. Evaluate the following limit by recognizing it as a derivative: $\lim _{x \rightarrow \frac{\pi}{3}} \frac{\sin (x)-\sin \left(\frac{\pi}{3}\right)}{x-\frac{\pi}{3}}$
