1. Consider the equation $x^{2}+y^{2}=1$.
(a) Sketch the graph.
(b) Can you represent that graph as the graph of a single function? Why or why not?
(c) Temporarily pretend $y=f(x)$ is a function of x. Rewrite the equation with $f(x)$ in the place of y. Differentiate the equation term by term, remembering to use the chain rule when needed. This is called implicit differentiation.
(d) Solve that new equation algebraically for $f^{\prime}(x)$ (your answer can have an $f(x)$ in it).
(e) Write your formula for f^{\prime} in terms of x and y. What does it represent on the graph? What would be a better (or alternate) notation to use here instead of f^{\prime} ?
(f) Solve the equation $x^{2}+y^{2}=1$ for y. (How many functions do you get?). Use this to find a (piecewise) formula for the slope of the tangent line to a circle using explicit differentiation. Show that your answer is equivalent to the one obtained above.
2. A differentiable function $y(x)$ satisfies $x^{2} \cos y+\sin y=x$ and $y(1)=0$. What is $y^{\prime}(1)$?
3. Sketch graphs of the relations
(i) $y^{2}-x^{2}=0$
(ii) $y^{2}-x^{2}=1$
(a) Find all continuous functions defined by (i) and (ii). (That means solve for y, and you may get more than one answer.)
(b) Using implicit differentiation, compute a formula for y^{\prime} for both (i) and (ii) above.
(c) Do the functions defined by (i) and (ii) above share a common derivative?
4. (a) Show that if a function f with the property $f^{\prime}(x)=f(x)$ has inverse g, then $g^{\prime}(x)=\frac{1}{x}$. (Hint: what is $g(f(x))$?)
(b) Use this to show that the derivative of $\ln x$ is $1 / x$.
(c) If $\ln (x y)=2 x+2 y$, find $\frac{d y}{d x}$.
