Midterm 2 Practice

WARMUP: Find the derivative of each function. Do not simplify. (At this point in the semester you should be able to do these quickly).

1. $f(x)=67 \pi+6(5 x+4)^{8}-47 x$
2. $g(x)=\frac{\arcsin \left(5 x^{2}\right)}{7}$
3. $h(x)=8 \ln (\sin (x)+\pi / 2)$

PRACTICE EXAM:

1. The graph of a function $f(x)$ is shown below.

(a) List the intervals of increase and decrease for the function.
(b) List the intervals where the function is concave up and concave down.
(c) List the x coordinates of any critical points. Are they maxima or minima?
2. Let $f(x)=x^{3}+2 x+1$. Find $\left(f^{-1}\right)^{\prime}(4)$.
(That is, find the derivative of the inverse function of $f(x)$ evaluated at the point 4. Hint: do not try to find $f^{-1}(x)$ in general.)
3. Consider the function $f(x)=x+\sqrt{x}$. Does this function satisfy the requirements of the mean value theorem on the interval $[0,4]$? If so, find the x coordinates of all points that satisfy the conclusion of the theorem.
4. A crate with square base and a volume of 15 cubic meters is needed. The material for the bottom costs $\$ 2$ per square meter, material for the top costs $\$ 3$ per square meter, and material for the sides costs $\$ 1$ per square meter. Find the dimensions of the crate that minimize the cost of the materials. What is the minimum material cost?
5. Let $f(x)=\sin (x)$.
(a) Find the linearization of $f(x)$ at $x=\pi / 4$.
(b) Use the linearization to approximate $f(\pi / 4+.01$). (You do not need to simplify your answer down to a decimal, but it should not have any trig functions in it.)
6. Let $f(x)=(4 x)^{\sin (x)}$.
(a) Find $f^{\prime}(x)$.
(b) Find the equation of the tangent line to $f(x)$ at $x=\pi$.

COOLDOWN: More derivatives.

1. $h(t)=4^{t} \log _{4} t$
2. $f(x)=\frac{(x+7)^{3 / 2}(2 x+4)^{3}}{e^{\tan ^{-1}(x)}}$
