1. State The Fundamental Theorem of Calculus (both parts).
2. Suppose that $f(x)$ has the following definition:

$$
f(x)=\int_{0}^{x}\left(1+\sin ^{2} t\right)^{1 / 2} d t
$$

(a) What is $f^{\prime}(x)$?
(b) Express $g(x)=\int_{2}^{\cos x}\left(1+\sin ^{2} t\right)^{1 / 2} d t$ in terms of f. Then find $g^{\prime}(x)$.
3. We are given a differentiable, odd function $f(x)$ defined on $[-3,3]$ which has zeros at $x=$ $-2,0$, and 2 (nowhere else) and critical points at $x=-1$ and $x=1$ (nowhere else). Also, we know that $f(-1)=1$. Define a new function F on $[-3,3]$ by the formula

$$
F(x)=\int_{-2}^{x} f(t) d t
$$

(a) Sketch a rough graph of $f(x)$.
(b) Find the value of $F(-2), F(2)$, and an upper and lower bound on $F(0)$.
(c) Find the critical points and inflection points of $F(x)$ on $[-3,3]$.
(d) Sketch a rough graph of $F(x)$ on $[-3,3]$.
(e) Interpret the points found in (c) in terms of the graphs of $f(x)$ and $F(x)$.
4. In each of the following sketch a graph(s) with the properties:
(a) $f(x)$ is not constant 0 and $\int_{-a}^{a} f(x) d x=0$.
(b) $f(x)<0$ for $x \in(-2,-1)$ and $\int_{-3}^{0} f(x) d x>0$.
(c) $f(x), g(x)<0 \forall x$ and $\int_{1}^{2}(f(x)-g(x)) d x>0$.
(d) $\int_{0}^{2 \pi} f(x) d x=0, \int_{0}^{2 \pi}|f(x)| d x=2 \int_{0}^{\pi} f(x) d x$.

