1. The graph given below represents the derivative of a function f, so the graph is a graph of f^{\prime}. Where (on which intervals) is the original function f increasing or decreasing? Where is f increasing most rapidly? Copy the graph carefully and sketch the graph of its derivative (that is, the graph of $f^{\prime \prime}$).

2. Suppose the dollar cost of producing x video cameras is

$$
C(x)=500 x-0.003 x^{2}+10^{-8} x^{3}
$$

The marginal cost at a level of production x_{0} is $C\left(x_{0}+1\right)-C\left(x_{0}\right)$, the cost of producing one more video camera if we are already making x_{0} cameras. The marginal cost at x_{0} can be approximated by $C^{\prime}\left(x_{0}\right)$ (why? explain). Calculate this and the actual marginal cost at $x_{0}=5000$.
3. As an epidemic spreads through a population, the percentage p of infected individuals at time t (in days) satisfies the equation (called a differential equation)

$$
\frac{d p}{d t}=4 p-0.06 p^{2} \quad 0 \leq p \leq 100
$$

(a) How fast is the epidemic spreading when $p=10 \%$ and when $p=70 \%$?
(b) For which p is the epidemic neither spreading nor diminishing?
(c) Plot $d p / d t$ as a function of p.
(d) What is the maximum possible rate of increase and for which p does this occur?
4. Let $f(x)=x^{2} e^{x}$.
(a) Find the first four derivatives of f. (Hint: factor out e^{x} each time you take a derivative.)
(b) Guess a formula for $f^{(n)}(x)$.

