Spend 50 minutes doing the following problems. As always, show all your work and reasoning carefully. Your work should be written up well enough so that a classmate can learn how to do the problem by reading what you wrote. There are hints and advice for some problems given in upside down text, so that you can attempt the problems before looking at the hints.
After finishing all the problems, form groups of two or three people and trade your booklets with each other. You will compare your answers and work, and discuss what was explained well, what could have been done differently, and what needs to be fixed. As always, be respectful and constructive in your criticisms.

1. Use the Intermediate Value Theorem to prove that the equation $3^{x}=x^{4}$ has a (real) solution.

2. Let $f(x)=x^{2}-3 x$.
(a) Use the definition of the derivative to find $f^{\prime}(x)$.

(b) Find an equation of the tangent line to the graph of $f(x)$ at the point $x=2$.
3. Find the derivative of each function. Don't simplify your answer.
(a) $\cos \left(\sin \left(x^{2}+3\right)\right)$
(b) $e^{2 x} \ln (\sqrt{x-1})$
(c) $\frac{x^{2}}{\csc (x)}$
4. Is $f(x)=\frac{x^{2}-3 x+2}{|x-2|}$ continuous? If not, identify where it is discontinuous and classify the discontinuities.

5. Prove using the (precise) definition of the limit that $\lim _{x \rightarrow 3} 2 x+1=7$

6. Evaluate the following limits:
(a) $\lim _{x \rightarrow \infty} \frac{7 x^{5}+x^{4}+3}{3 x^{5}+5 x^{2}+x+e}$
(b) $\lim _{x \rightarrow \pi / 2} \frac{\sin (x)-x^{2}}{\cos (x)}$
(c) $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$

