1. Given that $\lim _{x \rightarrow 3} f(x)=2$ and $\lim _{x \rightarrow 3} h(x)=7$, find the following limits, stating the limit rules that you use, or explain why the limit laws do not apply.
(a) $\lim _{x \rightarrow 3} f(x) h(x)$
(b) $\lim _{x \rightarrow 3}\left(4 f(x)+\frac{2}{h(x)}\right)$
(c) $\lim _{x \rightarrow 3} \frac{h(x)}{x-1}$
(d) $\lim _{x \rightarrow 3} \frac{f(x)+3}{h(x)-7}$
2. Evaluate the following limits. State what limit laws or theorems you use.

$$
\text { (a) } \lim _{x \rightarrow 3} \frac{\sqrt{x}-\sqrt{3}}{x-3} \text { (b) } \lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h} \quad \text { (c) } \lim _{y \rightarrow 0} y \sin (y)
$$

3. Determine whether the following statements are true or false and give an explanation or counterexample. Assume a and L are finite numbers.
(a) If $\lim _{x \rightarrow a} f(x)=L$, then $f(a)=L$.
(b) If $\lim _{x \rightarrow a^{+}} f(x)=L$, then $\lim _{x \rightarrow a^{-}} f(x)=L$.
(c) If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=L$, then $f(a)=g(a)$.
(d) The limit $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ does not exist if $g(a)=0$.
(e) If $\lim _{x \rightarrow 1^{+}} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 1^{+}} f(x)}$, it follows that $\lim _{x \rightarrow 1^{-}} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow 1^{-}} f(x)}$.
4. Give an example of functions $f(x)$ and $g(x)$ such that $\lim _{x \rightarrow 0}(f(x)+g(x))$ exists but neither $\lim _{x \rightarrow 0} f(x)$ nor $\lim _{x \rightarrow 0} g(x)$ exists.
5. (a) Suppose $f(x)=1$ when x is an irrational number and $f(x)=0$ when x is rational. Does $f(0)$ and $\lim _{x \rightarrow 0} f(x)$ exist? If so what is it?
(b) Suppose $f(x)=0$ when x is an irrational number and $f(x)=x^{2}$ when x is rational. Does $f(0)$ and $\lim _{x \rightarrow 0} f(x)$ exist? If so, what is it?
(c) Further reading: See the attached wikipedia article about Thomae's function. This might also be an interesting example to think about later when we discuss the rigorous definition of a limit and even later when we discuss differentiability.
