1. L'Hôpital's Rule says:

IF f and g are differentiable on an open interval containing a, and $g'(x) \neq 0$ near a (except maybe at a) and $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, or $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$, [that is, if $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0}$ or $\frac{\pm \infty}{\pm \infty}$]

THEN $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. [Note: This works if a is a real number or is $\pm \infty$].

- (a) Use L'Hôpital's Rule to evaluate $\lim_{x\to 0} \frac{\sqrt{9+3x-3}}{x}$ (as always, first check that the rule does apply here).
- (b) Use our earlier methods (multiplying by the conjuate) to evaluate $\lim_{x\to 0} \frac{\sqrt{9+3x}-3}{x}$ and check that your answer matches what you got by using L'Hôpital's Rule.
- (c) Show that the hypothesis is necessary in L'Hôpital's Rule by evaluating $\lim_{x \to 1} \frac{x^3 + x^2 2x}{x 2}$ and evaluating $\lim_{x \to 1} \frac{3x^2 + 2x - 2}{1}$. Explain why this shows that you need to check if the hypothesis holds before using L'Hôpital's Rule.
- 2. Prove a special case of L'Hôpital's Rule: Along with the assumptions above, assume that a is a real number, $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, f' and g' are continuous at a, f(a) = g(a) = 0, and $g'(a) \neq 0$.
 - (a) First, note $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \frac{f'(a)}{g'(a)}$. Why is that true? (Because of which assumption?)
 - (b) Write out the definitions of f'(a) and g'(a) using the limit definition of the derivative (we had two forms which one seems like it would be more relevant here?).
 - (c) Using the above, write out $\frac{f'(a)}{g'(a)}$ in terms of the limit definition of the derivative, and then combine the limits into one.
 - (d) What can you cancel out?
 - (e) Simplify to show that you get the right conclusion.
 - (f) Summarize what you showed.
- 3. Evaluate the following. L'Hôpital's rule will probably be helpful.

(a)
$$\lim_{z \to 0} \frac{\tan 4z}{\tan 7z}$$

(b)
$$\lim_{x \to 1} \frac{x^n - 1}{x - 1}, n \text{ is a positive integer}$$

(c)
$$\lim_{x \to 0} x^{1/x}$$

(d) $\lim_{x\to\infty} (x - \sqrt{x^2 + 1})$

4. It is important to remember that, while L'Hôpital's rule is very useful, it is not a magic bullet to solve all problems. Evaluate the following.

(a)
$$\lim_{x \to 0} \frac{\sin 4x}{\sin 3x}$$

(b)
$$\lim_{x \to 0} \frac{x^2 - 2x}{3x - 2}$$

(c)
$$\frac{d}{dx} \left(\frac{x^2 - 4}{x + 2} \right) \Big|_{x=2}$$

(d)
$$\lim_{x \to \frac{\pi}{2}} \left(x - \frac{\pi}{2} \right) \tan x$$

Name: