1. In this problem you will work out the definition of the integral of a continuous as the area under the curve. You may already know the answer from your book, but the point is to understand the answer. Do the following steps both for a specific function $g(x)=x^{2}$ on the interval $[0,4]$ and for a general continuous, differentiable function $f(x)$ on the interval $[\mathrm{a}, \mathrm{b}]$. (For now assume $f(x)$ is positive, so its graph is above the x -axis.)
(a) Sketch the function and interval.
(b) Approximate the area under the function on the given interval by sketching four rectangles with their left-hand basepoint on the graph of the function. Write this approximation as a sum.
(c) Do the same type of approximation but now with n rectangles. This is the left-hand Riemann Sum.
(d) Write the exact area under the curve as a limit of the sum.

Note: When evaluating integrals of general functions, it is important to think about using more general partitions than we have done here. But, as long as $f(x)$ is continuous and differentiable on $[\mathrm{a}, \mathrm{b}]$, this limit of the left-hand Riemann Sum is equal to the integral $\int_{a}^{b} f(x) d x$, and it doesn't matter if we use left, right, or mid points for the rectangles.
2. In this problem, you may choose values for a and b, or you may do your computations with a and b as symbolic constants.
(a) Find a formula for the right Riemann sum of $f(x)=2 x+1$ over the interval $[a, b]$, where a and b are constants with $a<b$.
(b) Compute the area under the graph of $y=f(x)$ as a limit. (Your answer may involve a and b.)
You may use the following fact as given: $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ (but for general interest I am attaching a proof of that fact that you can read later.)
(c) Check your answer using geometry.
3. Prove that $\frac{1}{3} \leq \int_{4}^{6} \frac{1}{x} d x \leq \frac{1}{2}$ without evaluating the integral. (Hint: Draw a picture and think about areas.)
4. Compute the following integrals by drawing a graph and using what you know about area.
(a) $\int_{1}^{4} x-2 d x$
(b) $\int_{0}^{3}|x-1| d x$
(c) $\int_{0}^{1} \sqrt{1-x^{2}} d x$

