1. Compute the following integrals by drawing a graph and using what you know about area.
(a) $\int_{1}^{4} x-2 d x$
(b) $\int_{0}^{3}|x-1| d x$
(c) $\int_{0}^{1} \sqrt{1-x^{2}} d x$
2. Prove that $\frac{1}{3} \leq \int_{4}^{6} \frac{1}{x} d x \leq \frac{1}{2}$ without evaluating the integral. (Hint: Draw a picture and think about areas.)
3. We know how to compute the average of n numbers: add them up and divide by n. But how can we compute the average of a continuous function? This problem will answer that question. Prof. Bob Loblaw knows that the temperature (heat) of an object varies with time as $H(t)=3 t-10$ for $0 \leq t \leq 4$.
(a) Explain why $\frac{1}{8} \sum_{j=0}^{7} H(j / 2)$ is a reasonable approximation to the average of the temperature function over the interval $[0,4]$.
(b) Show that, if we approximate the average temperature with n subdivisions, Prof. Bob Loblaw can write the approximation formula as

$$
A_{n}=\frac{1}{b-a} \sum_{j=0}^{n} H(j / n) \frac{b-a}{n}
$$

(c) What is the limit as $n \rightarrow \infty$ of the formula in the previous part? Use this answer to compute the average of the continuous function over $[0,4]$.
(d) What is a formula in general for the average value of a continuous function $f(x)$ on the interval $[a, b]$?
4. In each of the following sketch a graph(s) with the properties:
(a) $f(x)$ is not constant 0 and $\int_{-a}^{a} f(x) d x=0$.
(b) $f(x)<0$ for $x \in(-2,-1)$ and $\int_{-3}^{0} f(x) d x>0$.
(c) $f(x), g(x)<0 \forall x$ and $\int_{1}^{2}(f(x)-g(x)) d x>0$.
(d) $\int_{0}^{2 \pi} f(x) d x=0, \int_{0}^{2 \pi}|f(x)| d x=2 \int_{0}^{\pi} f(x) d x$.

