- 1. What is $\int \tan t \sec t \, dt$? Suppose you had forgotten that $\tan t \sec t = (\sec t)'$, but you remembered the antiderivatives of the sine and cosine (you do, don't you?). Can you find the solve the problem using substitution?
- 2. Compute the following integrals. In each case, think about whether substitution will be the best approach before you start.

(a)
$$\int \frac{e^{2x} + e^x}{e^x} dx$$

(b)
$$\int x(x+1)^2 dx$$

(c)
$$\int \cos x \sqrt{\sin x} dx$$

(d)
$$\int \frac{x}{x^2 - 1} dx$$

- 3. Find the following integrals:
 - (a) $\int_0^{\pi/4} \sec x \tan^2 x \, dx$ (b) $\int_1^e \frac{1}{x\sqrt{\ln x}} \, dx$ (c) $\int_0^{\pi} \frac{\sin x}{\cos^2 x} \, dx$
- 4. Find formulas for the values of these definite integrals, where a, b, c, d are constants. Do any restrictions apply?
 - (a) $\int_{a}^{b} (cx+d)^{n} dx$ (b) $\int_{a}^{b} x (cx^{2}+d)^{n} dx$
- 5. If $\int_a^b f(x) \, dx = b^3 a^3$ for all numbers a and b, what is $\int_a^b f'(x) \, dx$? (Hint: Use the FTC)