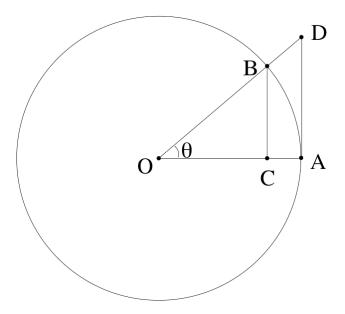
- 1. Recall the Squeeze Theorem: Suppose the functions f, g, and h satisfy $f(x) \le g(x) \le h(x)$ for all values of x near a, except possibly at a itself. Suppose also that $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$. Then $\lim_{x\to a} g(x) = L$.
 - (a) Sketch a picture with graphs of some f, g, and h to illustrate this theorem.
 - (b) Consider $\lim_{x\to 0} (x^3 \cos(\frac{3}{x}))$. Why can't you evaluate this limit just by plugging in x = 0?
 - (c) Write a careful proof using the Squeeze Theorem to show that $\lim_{x\to 0} (x^3 \cos(\frac{3}{r})) = 0.$
- 2. Consider the figure



- (a) In the unit circle pictured, find the area of triangle OBC, the area of triangle ODA, and the area of the sector of the circle OBA all as functions of θ .
- (b) Use the areas found above and the Squeeze Theorem to find $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$.
- (c) Use your result to compute $\lim_{\theta \to 0} \frac{1 \cos \theta}{\theta}$ algebraically. Hint: multiply by a clever form of one.
- 3. Find examples of functions f and g satisfying the following:
 - (a) $\lim_{x \to c} g(x) = 0$ but $\frac{f(x)}{g(x)}$ does not have a vertical asymptote at x = c.
 - (b) $\lim_{x \to c} f(x) = 0$ and $\frac{f(x)}{g(x)}$ does have a vertical asymptote at x = c.
 - (c) $\lim_{x \to c} g(x) \neq 0$ and $\frac{f(x)}{g(x)}$ does have a vertical asymptote at x = c.
 - (d) $\lim_{x \to c} f(x)$ exists and is not zero and $\lim_{x \to c} g(x) = 0$. Does the graph of $\frac{f(x)}{g(x)}$ have a vertical asymptote at x = c?

- 4. Let f(x) be a function that has x-intercepts at x = 0, x = 2, and x = -2; y-intercept (0, 0); horizontal asymptote y = -1; and vertical asymptotes at x = 3 and x = -3:
 - (a) Graph f(x). Is your graph unique? If so, why? If not, how many distinctive shapes can your graph have?
 - (b) As $x \to 3^+$ then $f(x) \to \underline{\qquad}$?
 - (c) As $x \to 3^-$ then $f(x) \to \underline{\qquad}$?
 - (d) As $x \to -3^+$ then $f(x) \to \underline{\qquad}$?
 - (e) As $x \to -3^-$ then $f(x) \to \underline{\qquad}$?
- 5. Intro to limits at infinity:
 - (a) What is $lim_{x\to\infty}\frac{1}{x}$? (b) What is $lim_{x\to\infty}\frac{1}{x^n}$ where $n \ge 1$?
 - (c) Use the above facts and some algebra to evaluate $\lim_{x\to\infty} \frac{x^3 + 3x + 1}{x^3 2x^2 + 17x \pi}$