1. Intro to limits at infinity:
(a) What is $\lim _{x \rightarrow \infty} \frac{1}{x}$? (Hint: picture the graph.)
(b) What is $\lim _{x \rightarrow \infty} \frac{1}{x^{n}}$ where $n \geq 1$?
(c) Use the above facts and some algebra to evaluate $\lim _{x \rightarrow \infty} \frac{x^{3}+3 x+1}{5 x^{3}-2 x^{2}+17 x-\pi}$
2. Fill in the boxes in the following definitions.
(a) The line \square is called a vertical asymptote of a function f if $\lim _{x \rightarrow \square} f(x)=\square$.
(b) The line \square is called a horizontal asymptote of a function f if $\lim _{x \rightarrow \square} f(x)=$or $\lim _{x \rightarrow \square} f(x)=\square$.
3. Find the vertical and horizontal asymptotes of the following functions.
(a) $h(x)=\frac{x^{2}-9}{x(x-3)}$
(b) $f(x)=e^{1 / x}$
(c) $g(x)=\frac{\cos x+2 \sqrt{x}}{\sqrt{x}}$
4. Let $g(x)=x^{1 / 3}$.
(a) Write the expression for the slope of the secant line that passes through $(0,0)$ and ($h, g(h)$).
(b) Calculate the limits of the slopes of the secant lines as as h approaches 0 from the left and the right.
(c) What can you say about the line tangent to the graph of g at $(0,0)$? Verify your answer by drawing the graph of the function.
5. Recall that a rational function is a ratio of two polynomial functions:

$$
f(x)=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{2} x^{2}+b_{1} x+b_{0}} .
$$

(a) Prove that if $m=n$, then $\lim _{x \rightarrow \pm \infty}=\frac{a_{m}}{b_{n}}$. (Hint: think about generalizing what you did in number 1c.)
(b) What happens if $m<n$?
(c) What happens if $m>n$?

