1. Without looking up the definition in your textbook, state very precisely what it means to say $\lim _{x \rightarrow a} f(x)=+\infty$ (where a is a finite number). Discuss your definition with the other members of your group, and try to make sure it is completely accurate and detailed. Draw a graph to illustrate your definition. Label relevant quantities on the x and y axes, and state your definition in terms of those. (This question should take at least several minutes of discussion.)
2. Use your definition to prove carefully that $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$.
3. Without looking up the definition in your textbook, state very precisely what it means to say $\lim _{x \rightarrow a} f(x)=L$ (where a and L are each finite numbers). Discuss your definition with the other members of your group, and try to make sure it is completely accurate and detailed. Draw a graph to illustrate your definition. Label relevant quantities on the x and y axes, and state your definition in terms of those. (This question should take at least several minutes of discussion.)
4. Does your definition make sense for the case where f has a removable discontinuity at a ? If not, think about how to modify your definition so that it does.
5. Can you use your definition to prove that $\lim _{x \rightarrow 2}(3 x)=6$?
6. Let

$$
f(x)= \begin{cases}3 x & : x \neq 2 \\ 5 & : x=2\end{cases}
$$

Use your definition to prove that $\lim _{x \rightarrow 2}(3 x)=6$. Is this proof different than the previous one?
7. Let

$$
f(x)= \begin{cases}1 & : x \leq 0 \\ 2 & : x>0\end{cases}
$$

Can you use your definition to prove that $\lim _{x \rightarrow 0} f(x)$ does not exist?
8. If you have time, try proving that $\lim _{x \rightarrow 2}\left(x^{2}\right)=4$. What step is different from the above proofs? To deal with that step, think about this: is your definition of the limit a global or local property of the function? Can you add a reasonable assumption that will make this proof work? (We'll discuss this more next time, so keep thinking about it.)

