1. Recall the formal definition of the limit that we worked out last time, and write it down carefully. Then, using that definition, formally prove the following limits.
(a) $\lim _{x \rightarrow 2} 3 x-1=5$
(b) $\lim _{x \rightarrow 2} x^{2}=4$
(c) $\lim _{x \rightarrow 3} x-9=-6$
(d) $\lim _{x \rightarrow 5} \frac{1}{x}=\frac{1}{5}$
2. (a) Given a function $f(x)$, write down a formula for the secant line between the points $(a, f(a))$ and $(x, f(x))$. Sketch a picture showing the secant line.
(b) Using a limit, write a formula for the slope of the tangent line at the point $(a, f(a))$. This is called the derivative of f at a, and is written $f^{\prime}(a)$.
(c) We can express the same derivative in a different way. Sketch the same picture as above, but now label the distance between x and a by h. Write an expression for $f^{\prime}(a)$ in terms of a and h. (Note that you can also let x play the role of a above and get an expression for $f^{\prime}(x)$ for any x.)
3. Let $f(x)=x^{2}$.
(a) Using each of the above definitions, evaluate $f^{\prime}(0)$ and $f^{\prime}(1)$. Verify on a sketch that these slopes make sense.
(b) Find an expression for $f^{\prime}(x)$ that is valid for all values of x.
4. Let

$$
f(x)= \begin{cases}-x & : x \leq 0 \\ x^{2} & : x>0\end{cases}
$$

(a) Is $f(x)$ continuous at $x=0$?
(b) Is $f^{\prime}(0)$ defined? If so, what is it?
5. Let $f(x)=\sqrt{x+1}$.
(a) Evaluate $f^{\prime}(3)$
(b) Find an expression for $f^{\prime}(x)$ that is valid for all values of x.

