- 1. Determine whether the following statements are true or false, giving an explanation or a counterexample.
 - (a) The slope of the tangent line to $f(x) = e^x$ is never zero.
 - (b) $f(x) = e^x$ is the only function such that f'(x) = f(x) for all x.
 - (c) $\frac{d}{dx}e^x = xe^{x-1}$
 - (d) The *n*th derivative $\frac{d^n}{dx^n}x^3 + 2x = 9$ equals 0 for any integer $n \ge 3$.

(e)
$$\frac{d}{dx}\left(\frac{x^2-4}{x+2}\right) = \frac{2x}{1} = 2x$$

- 2. Find the equation of the tangent line to the given function at x = a.
 - (a) $y = 2e^x 4x^2 + 3x;$ a = 0
 - (b) $f(x) = 4x^2 3x + 1;$ a = 2

 $3. \ Let$

$$f(x) = \begin{cases} x^2 - 2 & x \ge 2; \\ 3x - 4 & x < 2. \end{cases}$$

- (a) Is f continuous?
- (b) Find a formula giving the slope of the secant line intersecting f(x) when x = 2 and x = 2 + h. You should have different answers for h < 0 and h > 0. Why?
- (c) Find the limit of these slopes as $h \to 0^-$ and $h \to 0^+$.
- (d) Is f differentiable?
- 4. Do each problem in two ways: use the product or quotient rule, and then rewrite the function and apply the power rule.
 - (a) $f(t) = (2t+1)(t^2-2)$ (b) $h(t) = \frac{t^2-1}{t-1}$
- 5. Derive the derivatives of $\sec x$, $\csc x$, $\tan x$, and $\cot x$ given

$$\frac{d}{dx}\sin x = \cos x$$
 $\frac{d}{dx}\cos x = -\sin x.$

6. Use the limit definition to show that if f(x) is differentiable and $f(x) \neq 0$, then 1/f(x) is differentiable and

$$\frac{d}{dx}\left(\frac{1}{f(x)}\right) = -\frac{f'(x)}{f^2(x)}$$

Can you use this fact plus the product rule to prove the full quotient rule?