1. Determine whether the following statements are true or false, giving an explanation or a counterexample.
(a) The slope of the tangent line to $f(x)=e^{x}$ is never zero.
(b) $f(x)=e^{x}$ is the only function such that $f^{\prime}(x)=f(x)$ for all x.
(c) $\frac{d}{d x} e^{x}=x e^{x-1}$
(d) The nth derivative $\frac{d^{n}}{d x^{n}} x^{3}+2 x=9$ equals 0 for any integer $n \geq 3$.
(e) $\frac{d}{d x}\left(\frac{x^{2}-4}{x+2}\right)=\frac{2 x}{1}=2 x$
2. Find the equation of the tangent line to the given function at $x=a$.
(a) $y=2 e^{x}-4 x^{2}+3 x ; \quad a=0$
(b) $f(x)=4 x^{2}-3 x+1 ; \quad a=2$
3. Let

$$
f(x)= \begin{cases}x^{2}-2 & x \geq 2 \\ 3 x-4 & x<2\end{cases}
$$

(a) Is f continuous?
(b) Find a formula giving the slope of the secant line intersecting $f(x)$ when $x=2$ and $x=2+h$. You should have different answers for $h<0$ and $h>0$. Why?
(c) Find the limit of these slopes as $h \rightarrow 0^{-}$and $h \rightarrow 0^{+}$.
(d) Is f differentiable?
4. Do each problem in two ways: use the product or quotient rule, and then rewrite the function and apply the power rule.
(a) $f(t)=(2 t+1)\left(t^{2}-2\right)$
(b) $h(t)=\frac{t^{2}-1}{t-1}$
5. Derive the derivatives of $\sec x, \csc x, \tan x$, and $\cot x$ given

$$
\frac{d}{d x} \sin x=\cos x \quad \frac{d}{d x} \cos x=-\sin x .
$$

6. Use the limit definition to show that if $f(x)$ is differentiable and $f(x) \neq 0$, then $1 / f(x)$ is differentiable and

$$
\frac{d}{d x}\left(\frac{1}{f(x)}\right)=-\frac{f^{\prime}(x)}{f^{2}(x)}
$$

Can you use this fact plus the product rule to prove the full quotient rule?

