1. Write down the chain rule three ways: in Newton's notation (using primes), in Liebniz notation (using differentials), and as a sentence about inner and outer functions.
2. Assume that $f(x)$ is a differentiable function and that the values of $f(x)$ and its derivative at the points $x=0,1,2$, and 3 are given by:

x	$f(x)$	$f^{\prime}(x)$
0	3	-1
1	5	0
2	-2	3
3	6	1

Let $g(x)=x^{2}-3 x+2$. For each function below, calculate the derivative at the given point.
(a) $f(x) g(x) ; \quad x=2$
(b) $\frac{f(x)}{g(x)} ; \quad x=1$
(c) $f(g(x)) ; \quad x=0$
(d) $f(g(x)) ; \quad x=1$
3. (a) Imagine a road on which the speed limit is specified at every single point. In other words, there is a certain function L such that the speed limit x miles from the beginning of the road is $L(x)$. Two cars A and B, are driving along this road; car A's position at time t is $a(t)$, and car B's is $b(t)$.
(b) What equation expresses the fact that the car A always travels at the speed limit? (Hint: the answer is not $a^{\prime}(t)=L(t)$.)
(c) Suppose that A always goes at the speed limit, and that B's position at time t is A's position at time $t-1$. Show that B is also going at the speed limit at all times.
(d) Suppose B always stays at a constant distance behind A. Under what circumstances will B still always travel at the speed limit?
4. Differentiate the following.
(a) $f(x)=(1+\sqrt{x})^{\frac{1}{2}}$
(b) $g(x)=\left[\left(x^{2}+1\right)^{2}+\left(x^{2}+1\right)+1\right]^{2}$
(c) $f(x)=\left[x-\frac{2}{x+\sin x}\right]^{-1}$
(d) $f(x)=\sin \left(\frac{\cos x}{x}\right)$
5. Let $S(x)=$ sine of x radians (the usual $\sin (x)$ function we've been using).

Let $G(x)=$ sine of x degrees.
Similarly, let $C(x)=$ cosine of x radians, and let $H(x)=$ cosine of x degrees.
(a) Are S and G the same function? For what values of x is $S(x)=G(x)$? What about $C(x)$ and $H(x) ?$
(b) Express $G(x)$ and $H(x)$ in terms of $S(x)$ and $C(x)$.
(c) What is $\frac{d G}{d x}$? What is $\frac{d H}{d x}$? (Hint: Use part a) and the chain rule.)
(d) Express $\frac{d G}{d x}$ and $\frac{d H}{d x}$ in terms of $G(x)$ and $H(x)$. (No mention of \sin or S or \cos or C allowed.)
(e) Is it still true that $(G(x))^{2}+(H(x))^{2}=1$?
(f) Why don't we use the unit of degrees in calculus?
6. Find $f^{\prime}(x)$ in terms of $g(x)$ and $g^{\prime}(x)$, where $g(x)>0$ for all x . (Recall: If c is a constant, then $g(c)$ is a constant.)
(a) $f(x)=g(x)(x-a)$
(b) $f(x)=g(a)(x-a)$
(c) $f(x)=g(x+g(x))$
(d) $f(x)=\sqrt{g(x)^{2}}$
(e) $f(x)=\sqrt{g\left(x^{2}\right)}$
(f) $f(2 x+3)=g\left(x^{2}\right)$

Hint for $5 f$ You can write x as $x=2 \frac{(x-3)}{2}+3$.

