Justify your solutions and show your work.

1. Using the precise definition of the limit, prove that $\lim _{x \rightarrow 2} 3 x+1=7$.
2. Let $f(x)=x^{5}+3 x^{3}+2$.
(a) Prove that $f(x)$ has at least one real root.
(b) Prove that $f(x)$ has only one real root.
3. Let $f(x)=\frac{x}{e^{x}}$.
(a) Find all x-intercepts of $f(x)$.
(b) Find the intervals of monotonicity and all local extrema of $f(x)$.
(c) Find the intervals of concavity and all inflection points of $f(x)$.
(d) Find all vertical asymptotes of $f(x)$.
(e) Find all horizontal asymptotes of $f(x)$.
(f) Draw a sketch of $f(x)$ based on the above information.
4. Compute the following limits.
(a) $\lim _{x \rightarrow \pi}(1-\sin x)^{\cos x}$
(b) $\lim _{x \rightarrow 0+} \frac{e^{2 x}-1}{e^{3 x}-1}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{x^{6}+7}+3 x+5}{3 x^{3}-2 x+7}$
(d) $\lim _{x \rightarrow 1} \frac{(\ln (x)+x-1)}{\sin (\pi x)}$
(e) $\lim _{x \rightarrow 1}(\ln (x)+x-1)^{\sin (\pi x)}$
5. Evaluate the following:
(a) $\int \frac{\sin (\ln x)}{x} d x$
(b) $\int_{-5}^{5} x^{2} \sin (5 x) d x$.
(c) $\int_{-2}^{0} 2 x^{2} \sqrt{1-4 x^{3}} d x$.
6. $\int_{0}^{1} x^{2} d x$ is equal to which of the following?
(a) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(1 / n)(k / n)^{3}$
(b) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(1 / n)(k / n)^{2}$
(c) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}(5 / n)(k / n)^{2}$
(d) $\lim _{n \rightarrow 0} \sum_{k=1}^{n}(k / n)^{2}$
7. Air is being pumped into a spherical balloon at a rate of $5 \mathrm{~cm} 3 / \mathrm{min}$. Determine the rate at which the radius of the balloon is increasing when the diameter of the balloon is 20 cm .
8. Let $f(x)=x^{3}+2 x$. Find $\left(f^{-1}\right)^{\prime}(3)$.
9. An open rectangular box with a square base ("open" means it has no top) needs to be made out of $48 \mathrm{ft}^{2}$ of material. find the dimensions that give the largest possible volume.
10. Let $f(x)=\int_{3}^{x} \frac{1}{1+t^{3}} d t$. Find the best linear approximation to $f(x)$ at $\mathrm{x}=3$.
11. Find the average value of $f(x)=6 x^{2}-5 x+2$ on the interval $[-3,1]$.
