Justify your solutions and show your work.

1. Differentiate the following functions (with respect to x).
(a) $f(x)=x^{3} \cos \left(e^{x^{2}+2 x}\right)$
(b) $g(x)=\frac{2^{3 x+1}}{\ln x}$
(c) $h(x)=\int_{3}^{2 x} \frac{1}{1+t^{3}} d t$
2. Sketch a graph of the function $f(x)=\frac{x}{x^{2}+1}$. Label with x and y coordinates all local maxima and minima and inflection points. Also indicate any asymptotes or holes.
3. Compute the following limits.
(a) $\lim _{x \rightarrow \pi}(1-\sin x)^{\cos x}$
(b) $\lim _{x \rightarrow 0+0} \frac{e^{2 x}-1}{e^{3 x}-1}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{3}+3 x+5}{3 x^{3}-2 x+7}$
4. Ted wants to build a box with a square base and surface area 5 sq . meters. What is the largest possible volume that his box can have? (Use calculus to justify your answer.)
5. Evaluate the following:
(a) $\int_{0}^{2} u \sqrt{4 u+3} d u$.
(b) $\int \frac{\sin (\ln x)}{x} d x$
6. The average value of a function f over an interval $[a, b]$ is given by $\frac{1}{b-a} \int_{a}^{b} f(x) d x$. find the average value of $f(x)=x\left(x^{2}-7\right)^{3}$ over the interval $[-1,1]$.
