1. The Napkin Ring Problem. Consider a sphere of radius R with a cylindrical hole drilled through it with total length (or height) H. The shape left over can be thought of as a napkin ring.
(a) Which do you think will have greater volume, the case where $\mathrm{R}=20$ and $\mathrm{H}=10$ or the case where $\mathrm{R}=30$ and $\mathrm{H}=10$? Sketch a picture of each, and see how the shape changes as R changes.
(b) Calculate the volume of a napkin ring with radius of the sphere R and height of the hole H . (It might be helpful to call the radius of the cylinder r).
(c) Was your intuition in the first part correct? Do you find your answer surprising at all?
2. Show that the arc length integral gives the expected result for a linear function

$$
f(x)=m x+b, \quad a \leq x \leq c
$$

3. Find the arclengths of the graphs:
(a) $f(x)=\frac{2}{3}(x-7)^{\frac{3}{2}}$ on $[7,14]$
(b) $f(x)=\frac{1}{4} x^{2}-\frac{1}{2} \ln x$ on $[1,2]$
