Calculus II ESP

- 1. Consider the curve $y = \ln x$. Find the length of the curve from x = 1 to x = a. (Hint: the change of variables $u = \sqrt{x^2 + 1}$ allows evaluation by partial fractions.)
- 2. Evaluate the following itegral, which needs a change in variables to make a rational integrand.

$$\int \frac{\sec\theta}{1+\sin\theta} \, d\theta$$

- 3. This is a cool trick that just might win you an integration contest someday. Some integrands involving trigonometric functions can be converted into a rational integrand using the substitution $u = \tan(x/2)$ or $x = 2 \tan^{-1} u$.
 - (a) First, verify that with the given substitution we have

$$dx = \frac{2}{1+u^2}$$
 $\sin x = \frac{2u}{1+u^2}$ $\cos x = \frac{1-u^2}{1+u^2}$

(b) Now evaluate the following integrals with this technique.

i.
$$\int \frac{dx}{1 - \cos x}$$
 ii. $\int \frac{dx}{1 + \sin x + \cos x}$