Partial Fractions
 Worksheet \# 10

1. Consider the curve $y=\ln x$. Find the length of the curve from $x=1$ to $x=a$. (Hint: the change of variables $u=\sqrt{x^{2}+1}$ allows evaluation by partial fractions.)
2. Evaluate the following itegral, which needs a change in variables to make a rational integrand.

$$
\int \frac{\sec \theta}{1+\sin \theta} d \theta
$$

3. This is a cool trick that just might win you an integration contest someday. Some integrands involving trigonometric functions can be converted into a rational integrand using the substitution $u=\tan (x / 2)$ or $x=2 \tan ^{-1} u$.
(a) First, verify that with the given substitution we have

$$
d x=\frac{2}{1+u^{2}} \quad \sin x=\frac{2 u}{1+u^{2}} \quad \cos x=\frac{1-u^{2}}{1+u^{2}}
$$

(b) Now evaluate the following integrals with this technique.

$$
\text { i. } \int \frac{d x}{1-\cos x} \text { ii. } \int \frac{d x}{1+\sin x+\cos x}
$$

