Calculus II ESP

1. Determine whether the following integrals converge, and if so, evaluate.

(a)
$$\int_{1}^{\infty} x^{2} e^{-x} dx$$

(b)
$$\int_{0}^{1} \frac{x}{x-1} dx$$

- 2. Compute the volume of the solid generated by revolving the region under the graph of $y = 1/x^2$, $1 \le x \le \infty$ about the x axis.
- 3. Find the values of the series.

(a)
$$\sum_{k=0}^{\infty} \left(\frac{2}{3}\right)^k$$

(b) $\sum_{k=0}^{\infty} \frac{4^{k-2}+1}{5^k}$
(c) $\sum_{k=1}^{\infty} \frac{-1}{k^2+k}$

4. Show the convergence or divergence of each series.

(a)
$$\sum_{k=1}^{\infty} \frac{1}{k^{3/2} + 1}$$

(b) $\sum_{k=1}^{\infty} \frac{k^2}{2^k}$

5. Use the trapezoid rule with four subintervals to approximate $\int_0^{\pi} \cos \theta \ d\theta$.

- 6. Suppose that for an infinite series $\sum_{k=1}^{\infty} a_k$, the n^{th} partial sum is given by $S_n = 1 \frac{1}{n}$.
 - (a) What is $\lim_{n\to\infty} S_n$?
 - (b) Does $\sum_{k=1}^{\infty} a_k$ converge or diverge? Explain your answer.
- 7. Use the precise definition of the limit to prove that $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$