1. Determine whether the following integrals converge, and if so, evaluate.
(a) $\int_{1}^{\infty} x^{2} e^{-x} d x$
(b) $\int_{0}^{1} \frac{x}{x-1} d x$
2. Compute the volume of the solid generated by revolving the region under the graph of $y=1 / x^{2}, 1 \leq x \leq \infty$ about the x axis.
3. Find the values of the series.
(a) $\sum_{k=0}^{\infty}\left(\frac{2}{3}\right)^{k}$
(b) $\sum_{k=0}^{\infty} \frac{4^{k-2}+1}{5^{k}}$
(c) $\sum_{k=1}^{\infty} \frac{-1}{k^{2}+k}$
4. Show the convergence or divergence of each series.
(a) $\sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}+1}$
(b) $\sum_{k=1}^{\infty} \frac{k^{2}}{2^{k}}$
5. Use the trapezoid rule with four subintervals to approximate $\int_{0}^{\pi} \cos \theta d \theta$.
6. Suppose that for an infinite series $\sum_{k=1}^{\infty} a_{k}$, the $n^{\text {th }}$ partial sum is given by $S_{n}=1-\frac{1}{n}$.
(a) What is $\lim _{n \rightarrow \infty} S_{n}$?
(b) Does $\sum_{k=1}^{\infty} a_{k}$ converge or diverge? Explain your answer.
7. Use the precise definition of the limit to prove that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$
