## Calculus II ESP

## Taylor Polynomials

Worksheet \# 22

1. Let $f$ be a function with the first $n$ derivatives defined at $a$. State the formula for the nth-order Taylor polynomial centered at $a$. How does this relate to the linear approximations we did in Calc I?
2. Find the second and third order Taylor polynomials centered at $x=a$ for the given function and value of $a$.
(a) $f(x)=\ln (1-x), \quad a=0$
(b) $f(x)=\frac{1}{1+x}, \quad a=0$
(c) $f(x)=\tan x, \quad a=0$
3. Consider $f(x)=\ln (1-x)$ and its Taylor polynomials from the first problem.
(a) Find a bound on the error in approximating $f(x)$ by $p_{3}(x)$ for values of $x$ in the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(b) Graph $y=\left|f(x)-p_{3}(x)\right|$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.
(c) At what points of $\left[-\frac{1}{2}, \frac{1}{2}\right]$ is the error largest? Smallest?
(d) Compare your results to the theoretical error bound you found in part a.
