- 1. State that the following are true, or change them to be correct statements.
 - (a) Any infinite series involving a variable is a power series.
 - (b) A power series representing a function f(x) always converges for every value of x.
 - (c) If $\sum a_k x^k$ and $\sum b_k x^k$ converge absolutely on an interval *I*, then $\sum (a_k + b_k) x^k$ also converges on *I*.
 - (d) There is a power series that converges for x in [-1, 1] or [2, 3] but not for x in (1, 2).
 - (e) If $\sum c_k x^k$ converges to f(x) on an interval I, then the term-by-term derivative of the series converges to f'(x) for all $x \in I$.
- 2. Find the interval of convergence of each of the following power series.

(a)
$$\sum n! x^n$$

(b) $\sum \frac{\ln n}{n} x^n$
(c) $\sum \frac{(-1)^{n+1}}{n \ln n} (x-3)^n$

 x^2

3. Find power series representations for the following, and give the interval of convergence.

(a)
$$\frac{1}{3+x}$$

(b) $\ln \sqrt{4-x}$