1. State that the following are true, or change them to be correct statements.
(a) Any infinite series involving a variable is a power series.
(b) A power series representing a function $f(x)$ always converges for every value of x.
(c) If $\sum a_{k} x^{k}$ and $\sum b_{k} x^{k}$ converge absolutely on an interval I, then $\sum\left(a_{k}+b_{k}\right) x^{k}$ also converges on I.
(d) There is a power series that converges for x in $[-1,1]$ or $[2,3]$ but not for x in $(1,2)$.
(e) If $\sum c_{k} x^{k}$ converges to $f(x)$ on an interval I, then the term-by-term derivative of the series converges to $f^{\prime}(x)$ for all $x \in I$.
2. Find the interval of convergence of each of the following power series.
(a) $\sum n!x^{n}$
(b) $\sum \frac{\ln n}{n} x^{n}$
(c) $\sum \frac{(-1)^{n+1}}{n \ln n}(x-3)^{n}$
3. Find power series representations for the following, and give the interval of convergence.
(a) $\frac{1}{3+x}$
(b) $\ln \sqrt{4-x^{2}}$
