1. An essential function in statistics and the study of the normal distribution (bell curve) is the error function:
$\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$
(Recall that $e^{-t^{2}}$ was our classic example of a function that cannot be anti-differentiated using elementary functions.)
(a) Compute the derivative of $\operatorname{erf}(\mathrm{x})$
(b) Expand $e^{-t^{2}}$ in a Maclaurin series, then integrate to find the first four nonzero terms of the Maclaurin series for erf.
(c) Use the polynomial in part (b) to approximate $\operatorname{erf}(0.15)$ and $\operatorname{erf}(-0.09)$.
2. The expected (average) number of tosses of a fair coin required to obtain the first head is $\sum_{1}^{\infty} k\left(\frac{1}{2}\right)^{k-1}$. Find the value of this sum by finding a Taylor expansion for $\frac{1}{(1-x)^{2}}$. What is the most that you should be willing to pay to play a game where you flip a coin until you get a head, and are paid $\$ 1$ for each flip?
3. The function $\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t$ is called the sine integral function.
(a) Expand the integrand in a Taylor series about 0.
(b) Integrate the series to find a Taylor series for Si .
(c) Approximate $\mathrm{Si}(0.5)$ and $\mathrm{Si}(1)$ using enough terms of your series to get an error less that 10^{-3}.
4. Using the binomial series formula, verify that

$$
\sqrt{1+x}=1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\ldots, \quad \text { for }-1<x \leq 1
$$

Now use properties of power series, substitution and factoring to find the first four nonzero terms of the Taylor series centered at zero for $\sqrt{a^{2}+x^{2}}$ for $a>0$. What is its interval of convergence? Write the series using sigma notation and binomial coefficients $\binom{p}{k}$

