1. Find parametric equations for the folowing curves, including an interval for the parameter values.
(a) The left half of the parabola $y=x^{2}+1$, originating at $(0,1)$.
(b) The line that passes through the points $(1,1)$ and $(3,5)$, oriented in the direction of increasing x.
2. A bullet shot with initial velocity v_{o} from a gun at ground level aimed up at an angle θ travels according to the parametric equations

$$
\begin{aligned}
& x(t)=v_{o} t \cos \theta \\
& y(t)=v_{o} t \sin \theta-g t^{2} .
\end{aligned}
$$

(a) Show that the path of the bullet is a parabola.
(b) How much time elapses before the bullet hits the ground?
(c) How far does the bullet travel before it hits the ground?
(d) What is the maximum height reached?
(e) How should θ be chosen to maximize the range?
3. Match the following for equations with the four graphs in the accompanying picture. Explain your reasoning.
(i) $x=t^{2}-2, y=t^{3}-t$
(ii) $x=\cos (t+\sin 50 t), y=\sin (t+\cos 50 t)$
(iii) $x=t+\cos 2 t, y=t-\sin 4 t$
(iv) $x=2 \cos t+\cos 20 t, y=2 \sin t+\sin 20 t$

(B)

(A)

(D)

(C)

