1. Warm up:
(a) Plot the points in polar coordinates: $(1, \pi / 4),(3,3 \pi / 4),(0,0),(-1,0),(1,-\pi / 4)$
(b) Given a point with cartesian coordinates (x, y), give the equations that help find its polar coordinates (r, θ).
(c) Given a point with polar coordinates (r, θ), give the equations to find its cartesian coordinates (x, y).
(d) Recall that polar coordinates are not unique. Give another set of polar coordinates for the following points.

$$
\begin{array}{lll}
\text { i. }\left(5, \frac{\pi}{4}\right) & \text { ii. }(-2, \pi) & \text { iii. }(0,0)
\end{array}
$$

2. Sketch graphs for the following equations in polar coordinates.
(a) $r=4 \cos \theta$
(b) $r=3-5 \cos \theta$
(c) $r=3 \cos 6 \theta$
(d) $r^{2}=18 \cos 2 \theta$
3. Let $r=f(\theta)$ be a smooth function in polar coordinates.
(a) Write the parametric form of this curve, with θ as your parameter.
(b) Note that when we refer to the slope of this curve, we still mean the rate of change of the vertical with respect to the horizontal (not $d r / d \theta$). Show that the slope of $r=f(\theta)$ is

$$
\frac{d y}{d x}=\frac{f^{\prime}(\theta) \sin (\theta)+f(\theta) \cos (\theta)}{f^{\prime}(\theta) \cos (\theta)-f(\theta) \sin (\theta)}
$$

(c) Find the slopes of the lines tangent to the 4-petal rose given by $r=\sin 2 \theta$ at the tips of its leaves. (Drawing a graph will tell you the answer, but use calculus to prove it.)
4. Find the area of the region inside the circle $r=2 \cos (\theta)$ but outside the circle $r=1$. Make a sketch and do your work in polar coordinates. Recall we did a similar problem in rectangular coordinates several weeks ago (the shape was called a lune). Was the problem simpler or more complicated in polar coordinates?

