1. Warm up:

- (a) Plot the points in polar coordinates: $(1, \pi/4), (3, 3\pi/4), (0, 0), (-1, 0), (1, -\pi/4)$
- (b) Given a point with cartesian coordinates (x, y), give the equations that help find its polar coordinates (r, θ) .
- (c) Given a point with polar coordinates (r, θ) , give the equations to find its cartesian coordinates (x, y).
- (d) Recall that polar coordinates are not unique. Give another set of polar coordinates for the following points.

i.
$$(5, \frac{\pi}{4})$$
 ii. $(-2, \pi)$ iii. $(0, 0)$

2. Sketch graphs for the following equations in polar coordinates.

(a)
$$r = 4\cos\theta$$
 (b) $r = 3 - 5\cos\theta$
(c) $r = 3\cos6\theta$ (d) $r^2 = 18\cos2\theta$

- 3. Let $r = f(\theta)$ be a smooth function in polar coordinates.
 - (a) Write the parametric form of this curve, with θ as your parameter.
 - (b) Note that when we refer to the slope of this curve, we still mean the rate of change of the vertical with respect to the horizontal (not $dr/d\theta$). Show that the slope of $r = f(\theta)$ is

$$\frac{dy}{dx} = \frac{f'(\theta)sin(\theta) + f(\theta)cos(\theta)}{f'(\theta)cos(\theta) - f(\theta)sin(\theta)}$$

- (c) Find the slopes of the lines tangent to the 4-petal rose given by $r = \sin 2\theta$ at the tips of its leaves. (Drawing a graph will tell you the answer, but use calculus to prove it.)
- 4. Find the area of the region inside the circle $r = 2cos(\theta)$ but outside the circle r = 1. Make a sketch and do your work in polar coordinates. Recall we did a similar problem in rectangular coordinates several weeks ago (the shape was called a lune). Was the problem simpler or more complicated in polar coordinates?