Math 165: Revenue Streams and Mortgages

This file is http://www.math.uic.edu/~jlewis/math165/165mortgage.pdf

1. Income and Investment Streams

Simple Model

If a *present value* P is invested at time t = 0 with continuous compounding (CC) at rate r, the *future value* at time t = T is

$$B = B(T) = Pe^{rT} = P(0)e^{rT}$$

If we wish to have *future value* B at time t = T, we should invest a *present value* P given by

$$P = P(0) = Be^{-rT} = B(T)e^{-rT}.$$

If we wish to withdraw amounts B_1, B_2, \ldots, B_N , at times T_1, T_2, \ldots, T_N , we must have present value

$$P = P_1 + P_2 + \ldots + P_N = B_1 e^{-rT_1} + B_2 e^{-rT_2} + \ldots + B_N e^{-rT_N} = \sum B_i e^{-rT_i}$$

Continuous Model – Income Stream

We wish to withdraw a *continuous income stream* – to withdraw continuously at a rate R [dollars/year] for T [years].

At a typical time t, over a period Δt , we will withdraw $\Delta B \approx R \Delta t$, a future value at time t. Thus we need a present value (investment) $\Delta P \approx e^{-rt} R \Delta t$. The total present value needed is

$$P = \sum \Delta P \approx \sum_{t \text{ from 0 to } T} e^{-rt} R \Delta t \approx \int_0^T R e^{-rt} dt.$$

Figure 1. Present Value P of an Income Stream R, $0 \le t \le T$

Similarly, if we *invest* continuously at rate R [dollars/year] for T [years], the *future value* B at time T will be given by

$$B = \int_0^T R \, e^{r(T-t)} \, dt.$$

Figure 2. Future Value *B* of an Investment Stream *R*, $0 \le t \le T$

$$\Delta P = R\Delta t \longrightarrow \Delta B \approx e^{r(T-t)} R\Delta t$$

$$0 \quad \bullet \quad T$$

$$B = \sum \Delta B \rightarrow \int_0^T R e^{r(T-t)} dt$$

Inflation Adjustments

Similar arguments can be made if the rate, R = R(t), depends on t. For example, the rate of contribution (investment) or income (revenue) might be continuously adjusted for inflation. In this case the formulas become:

If we wish to withdraw a *continuous income stream* – to withdraw continuously at a rate R(t) [dollars/year] for T [years], we need a present value

$$P = \int_0^T R(t) \, e^{-rt} \, dt.$$

In particular if we make a *cost of living adjustment* (COLA), of r_1 % annually,

$$R(t) = R_0 e^{r_1 t},$$

$$P = \int_0^T R_0 e^{(r_1 - r)t} dt.$$

If we *invest* continuously at a rate R(t) [dollars/year] for T [years], the *future value* B at time T will be given by

$$B=\int_0^T R(t)\,e^{r(T-t)}\,dt.$$

Pricing Annuities

For more on cost of living adjustments (COLA), see an exercise from Math 165 at UIC Math 165 Spring 2009 SA3: Pricing Annuities http://www.math.uic.edu/~jlewis/math165/165sa309.pdf

II. Mortgage Payments

A mortgage of P_0 for T years with an annual interest rate r is traditionally paid off at a fixed [annual] rate R.

If P(t) is the principal remaining at time t, in a [small] time period Δt , the payment is $R \Delta t$, the interest accrued is (or \approx) is $rP(t) \Delta t$ so that the change in principal is

$$\Delta P \approx -R\,\Delta t + rP\,\Delta t.$$

Using the language of differentials,*

$$dP = -R \, dt + rP \, dt.$$

Using the magic of differentials, we divide by dt^{\bigstar} to obtain the differential equation

$$\frac{dP}{dt} = -R + rP.$$

There are many ways to find all solutions. Let $P(t) = u(t)e^{rt}$. Then

$$P' - rP = u'e^{rt},$$

$$u'e^{rt} = -R,$$

$$u' = -Re^{-rt},$$

$$u(t) = \frac{R}{r}e^{-rt} + C,$$

$$P(t) = \frac{R}{r} + Ce^{rt}.$$

In addition there are two *boundary conditions* satisfied by P(t):

$$P(0) = P_0, P(T) = 0.$$

• In our case, \approx means that the *error*, which depends on t and Δt , satisfies

$$\lim_{\Delta t\to 0} \frac{error(t,\Delta t)}{\Delta t} = 0.$$

• divide by dt means: replace dt by $\Delta t \neq 0$, divide by Δt , and let $\Delta t \rightarrow 0$.

Using the initial condition, $P(0) = P_0$,

$$C = P_0 - \frac{R}{r},$$
$$P(t) = \frac{R}{r} + \left(P_0 - \frac{R}{r}\right) e^{rt}$$

If T is given, solve the equation P(T) = 0 for R:

$$R = \frac{rP_0e^{rT}}{e^{rT} - 1}$$

Since R is the annual rate of payment, the monthly payment is M = R/12. If R is given, solve the equation P(T) = 0 for T:

$$0 = \frac{R}{r} + \left(P_0 - \frac{R}{r}\right) e^{rT}$$
$$e^{rT} = \frac{R}{R - rP_0}$$
$$T = \frac{1}{r} \ln\left(\frac{R}{R - rP_0}\right)$$

N.B. In a practical application, $R - rP_0 > 0$. The case $R - rP_0 = 0$ corresponds to paying interest only.

Investigations

- 1. Variable Rate Mortgages. At a time $t = T_1$, the rate changes from r to r_1 . Investigate
- If the monthly payment *M* is held constant, how does the term (expiration date) of the loan change?
- If the term (expiration date) of the loan is unchanged, how does the monthly payment *M* change?
- 2. Accelerated Payments. At time $t = T_1$, make an extra payment R_1 and continue making the monthly payment M. How is the expiration date of the loan changed?
- 3. Rules of Thumb? Determine the veracity of the statements:
- Doubling the monthly payment M halves the period T of the mortgage.
- Doubling the period T of the mortgage halves the monthly payment M.
- 4. Compare. Several mortgage calculators are available on the web. Mortgage Calculator - Mortgage-calc.com http://www.mortgage-calc.com/mortgage/simple.html

Take several common loans (for example \$100,000, 30 years at 5.75%,). Compare the monthly payment M you have calculated using continuous compounding (CC) and the monthly payment calculated by your favorite web mortgage calculator. Are the results different?

5. **Monthly Compounding.** In practice, interest is *not* compounded continuously(CC). A discrete calculation using monthly compounding is used. If an annual rate r is compounded M equally spaced times in a year, the *annual percentage rate* (APR) is

$$\mathsf{APR} = \left(1 + \frac{r}{M}\right)^M - 1.$$

The actual annual interest paid is the same as if the APR rate were simply compounded.

On most consumer loans, the APR is recorded.

Discrete Payments

Mortgages and other loans are usually paid on a monthly basis. We will assume that there is a *nominal annual interest rate r*, and that payments of R are made M times per year so that in a time period of 1/M years, for a loan of P, $\left(1 + \frac{r}{M}\right)P$ is due.

Start with a loan of P_0 , and let P_n denote the principle remaining after the *n*th payment is made. The *n*th payment of *R* [dollars] covers the accrued interest $(\frac{r}{M}P_{n-1})$ and reduces the principal by $R - \frac{r}{M}P_{n-1}$.

There is a formula for P_n in terms of P_0 , r, and M. It is convenient to let

$$\alpha = 1 + \frac{r}{M}.$$

Then

$$P_{n} = \alpha P_{n-1} - R$$

= $\alpha (\alpha P_{n-2} - R) - R$
= $\alpha^{2} P_{n-2} - (\alpha + 1) R$
= $\alpha^{2} (\alpha P_{n-3} - R) - (\alpha + 1) R$
= $\alpha^{3} P_{n-3} - (\alpha^{2} + \alpha + 1) R$
= ...
= $\alpha^{n} P_{0} - (\alpha^{n-1} + ... + \alpha + 1) R$.
= $\alpha^{n} P_{0} - \frac{\alpha^{n} - 1}{\alpha - 1} R$.

If the loan is paid off in T years with N = MT payments, we have the equation for R.

$$\alpha^{N}P_{0} = (\alpha^{N-1} + \ldots + \alpha + 1)R$$
$$= \frac{\alpha^{N} - 1}{\alpha - 1}R,$$
$$R = (\alpha - 1)\frac{\alpha^{N}}{\alpha^{N} - 1}P_{0}.$$

Note that

$$\alpha - 1 = \frac{r}{M},$$

165mortgage.pdf page 6/7

$$\alpha^{N} = \left(1 + \frac{r}{M}\right)^{MT}$$
$$= \left(1 + \frac{r}{M}\right)^{\frac{M}{r}rT}$$
$$= \left[\left(1 + \frac{r}{M}\right)^{\frac{M}{r}}\right]^{rT}.$$

Let

$$E = \left(1 + \frac{r}{M}\right)^{\frac{M}{r}}.$$

Note that $\frac{r}{M}$ is small and $\lim_{\epsilon \to 0} (1 + \epsilon)^{\frac{1}{\epsilon}} = e$, so that $E \approx e$. We obtain

$$R = \frac{r}{M} \frac{E^{rT}}{E^{rT} - 1} P_0,$$

$$E = \left(1 + \frac{r}{M}\right)^{\frac{M}{r}}$$

$$\approx e.$$

N.B. Since we have there are M payments in a year, the total yearly payment, Y, is

$$Y = r \frac{E^{rT}}{E^{rT} - 1} P_0. \tag{\dagger}$$

If Y and P_0 are given, solve the equation (†) for T:

$$\frac{Y}{rP_0} = \frac{E^{rT}}{E^{rT} - 1},$$

$$\left(E^{rT} - 1\right)\frac{Y}{rP_0} = E^{rT},$$

$$E^{rT} = \frac{Y}{Y - rP_0},$$

$$T = \frac{1}{\ln(E)}\frac{1}{r}\ln\left(\frac{Y}{Y - rP_0}\right).$$

165mortgage.pdf page 7/7