```
math165 ex 2 3 48.mw
```

Maple 9.5 Worksheet for Problems in Math 165 - Calculus for Business.

First load plots and student:

```
> restart:with( student):with (plots):
```

Chapter 2 Section 2.3 Problem 48 p. 136 DEMAND AND REVENUE

The manager of a company that produce graphing calculators determines that when x thousand calculators ar produced, they will be sold when the price is

$$p(x) = 1.000/(0.3 \text{ x}^2 + 8)$$

dollars per calculator.

- (a) At what rate is demand [price?] p(x) changing with respect to the level of production x when 3,000 (x = 3) calculators are produced?
- (b) The revenue derived from the sale of x thousand calculators is

$$R(x) = x p(x)$$

To answer (a), evaluate dp/dx when x = 3.

To answer (b) calculate dR/dx = 1 p(x) + x dp/dx when x = 3.

```
> p:= proc(x) description`price at production (demand) x thousand`;
> 1000/(0.3* x^2 + 8):
> end proc; p(x);
p:= proc(x)
```

description 'price at production (demand) x thousand';

$$1000/(0.3*x^2 + 8)$$

end proc

>

$$\frac{1000}{0.3 x^2 + 8}$$

```
> R:= proc(x) description`Revenue at at price x`;
> x*p(x):
> end proc;R(x);
```

 $R := \mathbf{proc}(x)$ description 'Revenue at at price x'; x * p(x) end proc

$$\frac{1000 x}{0.3 x^2 + 8}$$

To answer (a), calculate the derivative dp/dx

```
> p_prime:=proc(x) description `derivarive of p(x) wrt x`;
> diff(p(x),x):
```

```
> end proc; p prime(x);
      p prime := proc(x) description 'derivative of p(x) wrt x'; diff (p(x), x) end proc
                                     -\frac{600.0 x}{(0.3 x^2 + 8)^2}
Evaluate at x=3:
  eval([p(x),p prime(x)],x=3);
  cat("At x =3, P =",convert(%[1],string), " and p prime = ",convert(%
 [2],string));
                               [93.45794393, -15.72189711]
                  "At x = 3, P = 93.45794393 and p prime = -15.72189711"
To answer (b). calculate dR/dx.
 > R prime:= proc(x) description `derivative of R(x) `:
 > diff(R(x),x):
 > end proc; R prime(x);normal(R prime(x));
         R prime := proc(x) description 'derivative of R(x)'; diff (R(x), x) end proc
                               \frac{1000}{0.3 x^2 + 8} - \frac{600.0 x^2}{\left(0.3 x^2 + 8\right)^2}
                                    -\frac{300.0 x^2 - 8000.}{\left(0.3 x^2 + 8\right)^2}
 > eval([R(x),R prime(x)],x=3);
                               [280.3738318, 46.29225261]
Conclude that producing 100 more calculators (lower the price!) will give a revenue increase of
approximately 4.6 thousand dollars -- even though the price is being reduced by approximately
1,6 dollars. Note that the price at a production level of 3,000 is 93.46 or eval (p(x), x=3); To
verify this
 > \text{ eval}([R(x),p(x)],x=3.1);
                                       93.45794393
                               [284.8479280, 91.88642837]
```